linux内存文件系统之指南

本文深入解析Linux中的内存文件系统,包括RamDisk、Ramfs与Tmpfs的使用方法、特点及应用。从创建、调整大小到卸载,全面覆盖。了解如何利用内存提升系统性能。
内存文件系统使用及示例:ramdisk, ramfs, tmpfs 
第一部分
在Linux中可以将一部分内存mount为分区来使用,通常称之为RamDisk。 
RamDisk有三种实现方式: 
第一种就是传统意义上的,可以格式化,然后加载。 
这在Linux内核2.0/2.2就已经支持,其不足之处是大小固定,之后不能改变。 
为了能够使用Ramdisk,我们在编译内核时须将block device中的Ramdisk支持选上,它下面还有两个选项,一个是设定Ramdisk的大小,默认是4096k;另一个是initrd的支持。 
如果对Ramdisk的支持已经编译进内核,我们就可以使用它了: 
查看一下可用的RamDisk,使用ls /dev/ram* 
首先创建一个目录,比如test,运行mkdir /mnt/test; 
然后对/dev/ram0 创建文件系统,运行mke2fs /dev/ram0; 
最后挂载 /dev/ram0,运行mount /dev/ram /mnt/test,就可以象对普通硬盘一样对它进行操作了。 

更详细的内容可以参考: http://www.linuxfocus.org/ChineseGB/November1999/article124.html                                                 http://www.vanemery.com/Linux/Ramdisk/ramdisk.html 

另两种则是内核2.4才支持的,通过Ramfs或者Tmpfs来实现: 
它们不需经过格式化,用起来灵活,其大小随所需要的空间而增加或减少。 

Ramfs顾名思义是内存文件系统,它它处于虚拟文件系统(VFS)层,而不像ramdisk那样基于虚拟在内存中的其他文件系统(ex2fs)。 

因而,它无需格式化,可以创建多个,只要内存足够,在创建时可以指定其最大能使用的内存大小。 
如果你的Linux已经将Ramfs编译进内核,你就可以很容易地使用Ramfs了。创建一个目录,加载Ramfs到该目录即可: 
                  # mkdir  /testRam 
                  # mount -t ramfs none /testRAM 
缺省情况下,Ramfs被限制最多可使用内存大小的一半。可以通过maxsize(以kbyte为单位)选项来改变。 
                  # mount -t ramfs none /testRAM -o maxsize=2000 (创建了一个限定最大使用内存为2M的ramdisk) 

Tmpfs是一个虚拟内存文件系统,它不同于传统的用块设备形式来实现的Ramdisk,也不同于针对物理内存的Ramfs。 
  Tmpfs可以使用物理内存,也可以使用交换分区。在Linux内核中,虚拟内存资源由物理内存(RAM)和交换分区组成,这些资源是由内核中的虚拟内存子系统来负责分配和管理。 
  Tmpfs向虚拟内存子系统请求页来存储文件,它同Linux的其它请求页的部分一样,不知道分配给自己的页是在内存中还是在交换分区中。同Ramfs一样,其大小也不是固定的,而是随着所需要的空间而动态的增减。 
   使用tmpfs,首先你编译内核时得选择"虚拟内存文件系统支持(Virtual memory filesystem support)" 。 
  然后就可以加载tmpfs文件系统了: 
            # mkdir -p /mnt/tmpfs 
            # mount tmpfs /mnt/tmpfs -t tmpfs 
  同样可以在加载时指定tmpfs文件系统大小的最大限制: 
           # mount tmpfs /mnt/tmpfs -t tmpfs -o size=32m 

使用df -aT命令可以看到有个/dev/shm目录,该目录的文件系统是tmpfs的,因此这个目录下的文件访问是非常快的,但是其大小可能不同机器都不一样,而且每次重启后文件也就丢失了。 

第二部分
LINUX下我所接触过的内存文件系统有三个:

(1)ramdisk,使用前需要先创建文件系统,并且调整文件系统大小比较麻烦,需要修改内核引导参数并重新启动操作系统,在繁杂多变的应用与需要 7X24不间断运行的系统来说,并不是一个可以接受的选择.好处是自2.0版本起内核便支持(这也算好处?嗯,确实算,如果你手头真有这样的系统的话)

(2)ramfs,使用前不需要去创建文件系统了,直接通过mount的方式即可挂载上来用,需要的时候可以使用"mount -o remount,maxsize=..."这种方式来调整大小.

(3)tmpfs,同ramfs在表面上基本上一样啦,不同于ramfs针对"物理内存",tmpfs是在虚拟内存下分配空间的,也就是说tmpfs实例中存储的文件既可能存在于物理内存中,也可能存在于交换分区中,具体存在哪里,是由"虚拟内存子系统"来调度的.

纯性能角度讲,ramfs会在进程占用内存使用较多的情况下会优于tmpfs,在没有交换分区或进程占用内存较小而不发生swap行为的情况下,两者性能不会有差异(这个结论没有实测过,我"想当然"用猜的)

基本情况介绍完毕,下面介绍tmpfs的应用,(没办法,我手头机器内存不是那么宽裕...)

0,根据需要创建挂载目录,例:

mkdir -p $DIR_TMP;

1,挂载

mount my_tmpfs $DIR_TMP -t tmpfs -o size=512m

my_tmpfs这个名字需要起,一个标识而已,会出现在df 的Filesytem一列,起个别致点的名字比较容易被自己写的其它监控脚本找到,如果非要起个none或tmpfs之类的名字的话...反正系统默认挂载的tmpfs都比较喜欢用这两个名字,好坏自己琢磨吧.

成功以后自己用df 看一下就知道了,写监控脚本时可以用"df -t tmpfs|grep ^my_tmpfs"来找到这一行.

2,调整

应用中如果感觉不合适,随时可以用mount命令调整

mount $DIR_TMP -o remount,size=1024m,nr_inodes=100k

nr_inodes为最大节点数,如果你的$DIR_TMP使用df命令查看明明有空间,却无法创建新文件(例如touch一个新文件),可能是文件节点用到上限了,可以用"df -i"命令来查看,如果是有空间但节点达到上限,就需要用nr_inodes来调整了.

其它可以调整的参数:
mode,uid,gid,
        uid和gid就不多说了,不知道的回家补基础,mode也不多说了,取值是3个八进制数字,表示许可权限,不知道这个的也回家...
其它参数,参见mount命令的man page之OPTIONS一节中"-o"参数的说明.

3,卸载

umount $DIR_TMP

4,其它

mount 命令的man page中对tmpfs提及不多,详细一些的文档,请参阅内核文档Documentation/filesystems/tmpfs.txt(内核源代码目录内)
 
原文见:http://www.cnblogs.com/moodlxs/articles/2325075.html
基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)内容概要:本文介绍了基于实时迭代的数值鲁棒非线性模型预测控制(NMPC)双模稳定预测模型的研究与Matlab代码实现,重点在于通过数值方法提升NMPC在动态系统中的鲁棒性与稳定性。文中结合实时迭代机制,构建了能够应对系统不确定性与外部扰动的双模预测控制框架,并利用Matlab进行仿真验证,展示了该模型在复杂非线性系统控制中的有效性与实用性。同时,文档列举了大量相关的科研方向与技术应用案例,涵盖优化调度、路径规划、电力系统管理、信号处理等多个领域,体现了该方法的广泛适用性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事自动化、电气工程、智能制造等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于解决非线性动态系统的实时控制问题,如机器人控制、无人机路径跟踪、微电网能量管理等;②帮助科研人员复现论文算法,开展NMPC相关创新研究;③为复杂系统提供高精度、强鲁棒性的预测控制解决方案。; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,重点关注NMPC的实时迭代机制与双模稳定设计原理,并参考文档中列出的相关案例拓展应用场景,同时可借助网盘资源获取完整代码与数据支持。
UWB-IMU、UWB定位对比研究(Matlab代码实现)内容概要:本文介绍了名为《UWB-IMU、UWB定位对比研究(Matlab代码实现)》的技术文档,重点围绕超宽带(UWB)与惯性测量单元(IMU)融合定位技术展开,通过Matlab代码实现对两种定位方式的性能进行对比分析。文中详细阐述了UWB单独定位与UWB-IMU融合定位的原理、算法设计及仿真实现过程,利用多传感器数据融合策略提升定位精度与稳定性,尤其在复杂环境中减少信号遮挡和漂移误差的影响。研究内容包括系统建模、数据预处理、滤波算法(如扩展卡尔曼滤波EKF)的应用以及定位结果的可视化与误差分析。; 适合人群:具备一定信号处理、导航定位或传感器融合基础知识的研究生、科研人员及从事物联网、无人驾驶、机器人等领域的工程技术人员。; 使用场景及目标:①用于高精度室内定位系统的设计与优化,如智能仓储、无人机导航、工业巡检等;②帮助理解多源传感器融合的基本原理与实现方法,掌握UWB与IMU互补优势的技术路径;③为相关科研项目或毕业设计提供可复现的Matlab代码参考与实验验证平台。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现细节,重点关注数据融合策略与滤波算法部分,同时可通过修改参数或引入实际采集数据进行扩展实验,以加深对定位系统性能影响因素的理解。
本系统基于MATLAB平台开发,适用于2014a、2019b及2024b等多个软件版本,并提供了可直接执行的示例数据集。代码采用模块化设计,关键参数均可灵活调整,程序结构逻辑分明且附有详细说明注释。主要面向计算机科学、电子信息工程、数学等相关专业的高校学生,适用于课程实验、综合作业及学位论文等教学与科研场景。 水声通信是一种借助水下声波实现信息传输的技术。近年来,多输入多输出(MIMO)结构与正交频分复用(OFDM)机制被逐步整合到水声通信体系中,显著增强了水下信息传输的容量与稳健性。MIMO配置通过多天线收发实现空间维度上的信号复用,从而提升频谱使用效率;OFDM方案则能够有效克服水下信道中的频率选择性衰减问题,保障信号在复杂传播环境中的可靠送达。 本系统以MATLAB为仿真环境,该工具在工程计算、信号分析与通信模拟等领域具备广泛的应用基础。用户可根据自身安装的MATLAB版本选择相应程序文件。随附的案例数据便于快速验证系统功能与性能表现。代码设计注重可读性与可修改性,采用参数驱动方式,重要变量均设有明确注释,便于理解与后续调整。因此,该系统特别适合高等院校相关专业学生用于课程实践、专题研究或毕业设计等学术训练环节。 借助该仿真平台,学习者可深入探究水声通信的基础理论及其关键技术,具体掌握MIMO与OFDM技术在水声环境中的协同工作机制。同时,系统具备良好的交互界面与可扩展架构,用户可在现有框架基础上进行功能拓展或算法改进,以适应更复杂的科研课题或工程应用需求。整体而言,该系统为一套功能完整、操作友好、适应面广的水声通信教学与科研辅助工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值