NIPS2019:旷视提出DetNAS:首个搜索物体检测Backbone的方法

旷视研究院提出的DetNAS是首个用于物体检测Backbone搜索的神经网络方法,它在COCO数据集上的性能超越ResNet-50和ResNet-101,且计算量更低。DetNAS通过预训练、微调和结构搜索三步流程,解决了目标检测中Backbone优化的挑战,证明了其在目标检测领域的有效性。

在这里插入图片描述
论文名称:DetNAS: Backbone Search for Object Detection
论文链接https://arxiv.org/abs/1903.10979
开源代码: https://github.com/megvii-model/DetNAS

物体检测器通常使用图像分类网络的Backbone,由于和检测任务存在一定差异,这些Backbone往往不是最优的。本文中,旷视研究院提出DetNAS,这是首个用于设计更好的物体检测器Backbone的神经网络搜索方法;由DetNAS搜索出的框架在COCO上的性能超越了ResNet-50与ResNet-101,且模型计算量更低。本文已收录于神经信息处理系统大会NeurIPS 2019。

目录
  • 导语
  • 简介
  • 方法
    • DetNAS Pipeline
    • 空间搜索设计
    • 搜索算法
  • 实验
    • 实验结果
    • DetNAS架构
  • 结论
  • 参考文献
导语

在目标检测器中,Backbone起着非常重要的作用,目标检测器的性能高度依赖于Backbone所提取的特征。大多数目标检测器直接使用为图像分类而设计的网络来作为Backbone,但这种方法往往不是最优的,因为图像分类仅关注的是图中主要物体是什么,而目标检测试图在图像中找到每个目标的位置和类别。

虽然目前依靠手工设计的网络能够实现部分性能的提升,但手工设计需要研究人员非常精通领域知识,同时还需要进行反复漫长的调试才能完成。对此,NAS技术可以提供帮助。

近年来,NAS技术取得了巨大突破。在图像分类任务上,通过搜索得到的网络能够匹敌甚至是超越传统手工设计的网络。然而,在目标检测领域使用NAS搜索Backbone仍然具有挑战。

简介

简单将之前的NAS方法用于搜索目标检测器的Backbone并不能解决问题。通常来说,检测器训练需要将Backbone网络先在ImageNet上预训

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值