import torch
from torch import nn
from torch.nn.init import xavier_uniform_
from torch.nn.init import constant_
from torch.nn.init import xavier_normal_
import math
import torch.nn.functional as F
from enum import IntEnum
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Dim(IntEnum):
batch = 0
seq = 1
feature = 2
class AKT(nn.Module):
def __init__(self, n_question, n_pid, d_model, n_blocks,
kq_same, dropout, model_type, final_fc_dim=512, n_heads=8, d_ff=2048, l2=1e-5, separate_qa=False):
super().__init__()
"""
Input:
d_model: dimension of attention block
final_fc_dim: dimension of final fully connected net before prediction
n_heads: number of heads in multi-headed attention
d_ff : dimension for fully conntected net inside the basic block
n_question:问题的数量。
n_pid:问题标识符(PID)的数量。
d_model:注意力块的维度。
n_blocks:注意力块的数量。
kq_same:一个布尔值,表示是否使用相同的键(K)和查询(Q)。
dropout:Dropout层的丢弃率。
model_type:模型的类型。
final_fc_dim:最终全连接层的维度。
n_heads:多头注意力中的头数。
d_ff:注意力块内部全连接层的维度。
l2:L2正则化的权重。
separate_qa:一个布尔值,表示是否将问题和答案嵌入向量分开。
"""
self.n_question = n_question
self.dropout = dropout
self.kq_same = kq_same
self.n_pid = n_pid
self.l2 = l2
self.model_type = model_type
self.separate_qa = separate_qa
embed_l = d_model
if self.n_pid > 0:
self.difficult_param = nn.Embedding(self.n_pid+1, 1)
self.q_embed_diff = nn.Embedding(self.n_question+1, embed_l)
self.qa_embed_diff = nn.Embedding(2 * self.n_question + 1, embed_l)
# n_question+1 ,d_model
self.q_embed = nn.Embedding(self.n_question+1, embed_l)
if self.separate_qa:
self.qa_embed = nn.Embedding(2*self.n_question+1, embed_l)
else:
self.qa_embed = nn.Embedding(2, embed_l)
# Architecture Object. It contains stack of attention block
self.model = Architecture(n_question=n_question, n_blocks=n_blocks, n_heads=n_heads, dropout=dropout,
d_model=d_model, d_feature=d_model / n_heads, d_ff=d_ff, kq_same=self.kq_same, model_type=self.model_type)
self.out = nn.Sequential(
nn.Linear(d_model + embed_l,
final_fc_dim), nn.ReLU(), nn.Dropout(self.dropout),
nn.Linear(final_fc_dim, 256), nn.ReLU(
), nn.Dropout(self.dropout),
nn.Linear(256, 1)
)
self.reset()
def reset(self):
for p in self.parameters():
if p.size(0) == self.n_pid+1 and self.n_pid > 0:
torch.nn.init.constant_(p, 0.)
def forward(self, q_data, qa_data, target, pid_data=None):
# Batch First
q_embed_data = self.q_embed(q_data) # BS, seqlen, d_model# c_ct
if self.separate_qa:
# BS, seqlen, d_model #f_(ct,rt)
qa_embed_data = self.qa_embed(qa_data)
else:
qa_data = (qa_data-q_data)//self.n_question # rt
# BS, seqlen, d_model # c_ct+ g_rt =e_(ct,rt)
qa_embed_data = self.qa_embed(qa_data)+q_embed_data
if self.n_pid > 0:
q_embed_diff_data = self.q_embed_diff(q_data) # d_ct
pid_embed_data = self.difficult_param(pid_data) # uq
q_embed_data = q_embed_data + pid_embed_data * \
q_embed_diff_data # uq *d_ct + c_ct
qa_embed_diff_data = self.qa_embed_diff(
qa_data) # f_(ct,rt) or #h_rt
if self.separate_qa:
qa_embed_data = qa_embed_data + pid_embed_data * \
qa_embed_diff_data # uq* f_(ct,rt) + e_(ct,rt)
else:
qa_embed_data = qa_embed_data + pid_embed_data * \
(qa_embed_diff_data+q_embed_diff_data) # + uq *(h_rt+d_ct)
c_reg_loss = (pid_embed_data ** 2.).sum() * self.l2
else:
c_reg_loss = 0.
# BS.seqlen,d_model
# Pass to the decoder
# output shape BS,seqlen,d_model or d_model//2
d_output = self.model(q_embed_data, qa_embed_data) # 211x512
concat_q = torch.cat([d_output, q_embed_data], dim=-1)
output = self.out(concat_q)
labels = target.reshape(-1)
m = nn.Sigmoid()
preds = (output.reshape(-1)) # logit
mask = labels > -0.9
masked_labels = labels[mask].float()
masked_preds = preds[mask]
loss = nn.BCEWithLogitsLoss(reduction='none')
output = loss(masked_preds, masked_labels)
return output.sum()+c_reg_loss, m(preds), mask.sum()
class Architecture(nn.Module):
def __init__(self, n_question, n_blocks, d_model, d_feature,
d_ff, n_heads, dropout, kq_same, model_type):
super().__init__()
"""
n_block : number of stacked blocks in the attention
d_model : dimension of attention input/output
d_feature : dimension of input in each of the multi-head attention part.
n_head : number of heads. n_heads*d_feature = d_model
"""
self.d_model = d_model
self.model_type = model_type
if model_type in {'akt'}:
self.blocks_1 = nn.ModuleList([
TransformerLayer(d_model=d_model, d_feature=d_model // n_heads,
d_ff=d_ff, dropout=dropout, n_heads=n_heads, kq_same=kq_same)
for _ in range(n_blocks)
])
self.blocks_2 = nn.ModuleList([
TransformerLayer(d_model=d_model, d_feature=d_model // n_heads,
d_ff=d_ff, dropout=dropout, n_heads=n_heads, kq_same=kq_same)
for _ in range(n_blocks*2)
])
def forward(self, q_embed_data, qa_embed_data):
# target shape bs, seqlen
seqlen, batch_size = q_embed_data.size(1), q_embed_data.size(0)
qa_pos_embed = qa_embed_data
q_pos_embed = q_embed_data
y = qa_pos_embed
seqlen, batch_size = y.size(1), y.size(0)
x = q_pos_embed
# encoder
for block in self.blocks_1: # encode qas
y = block(mask=1, query=y, key=y, values=y)
flag_first = True
for block in self.blocks_2:
if flag_first: # peek current question
x = block(mask=1, query=x, key=x,
values=x, apply_pos=False)
flag_first = False
else: # dont peek current response
x = block(mask=0, query=x, key=x, values=y, apply_pos=True)
flag_first = True
return x
class TransformerLayer(nn.Module):
def __init__(self, d_model, d_feature,
d_ff, n_heads, dropout, kq_same):
super().__init__()
"""
This is a Basic Block of Transformer paper. It containts one Multi-head attention object. Followed by layer norm and postion wise feedforward net and dropout layer.
"""
kq_same = kq_same == 1
# Multi-Head Attention Block
self.masked_attn_head = MultiHeadAttention(
d_model, d_feature, n_heads, dropout, kq_same=kq_same)
# Two layer norm layer and two droput layer
self.layer_norm1 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.linear1 = nn.Linear(d_model, d_ff)
self.activation = nn.ReLU()
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(d_ff, d_model)
self.layer_norm2 = nn.LayerNorm(d_model)
self.dropout2 = nn.Dropout(dropout)
def forward(self, mask, query, key, values, apply_pos=True):
"""
Input:
block : object of type BasicBlock(nn.Module). It contains masked_attn_head objects which is of type MultiHeadAttention(nn.Module).
mask : 0 means, it can peek only past values. 1 means, block can peek only current and pas values
query : Query. In transformer paper it is the input for both encoder and decoder
key : Keys. In transformer paper it is the input for both encoder and decoder
Values. In transformer paper it is the input for encoder and encoded output for decoder (in masked attention part)
Output:
query: Input gets changed over the layer and returned.
"""
seqlen, batch_size = query.size(1), query.size(0)
nopeek_mask = np.triu(
np.ones((1, 1, seqlen, seqlen)), k=mask).astype('uint8')
src_mask = (torch.from_numpy(nopeek_mask) == 0).to(device)
if mask == 0: # If 0, zero-padding is needed.
# Calls block.masked_attn_head.forward() method
query2 = self.masked_attn_head(
query, key, values, mask=src_mask, zero_pad=True)
else:
# Calls block.masked_attn_head.forward() method
query2 = self.masked_attn_head(
query, key, values, mask=src_mask, zero_pad=False)
query = query + self.dropout1((query2))
query = self.layer_norm1(query)
if apply_pos:
query2 = self.linear2(self.dropout(
self.activation(self.linear1(query))))
query = query + self.dropout2((query2))
query = self.layer_norm2(query)
return query
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, d_feature, n_heads, dropout, kq_same, bias=True):
super().__init__()
"""
It has projection layer for getting keys, queries and values. Followed by attention and a connected layer.
"""
self.d_model = d_model
self.d_k = d_feature
self.h = n_heads
self.kq_same = kq_same
self.v_linear = nn.Linear(d_model, d_model, bias=bias)
self.k_linear = nn.Linear(d_model, d_model, bias=bias)
if kq_same is False:
self.q_linear = nn.Linear(d_model, d_model, bias=bias)
self.dropout = nn.Dropout(dropout)
self.proj_bias = bias
self.out_proj = nn.Linear(d_model, d_model, bias=bias)
self.gammas = nn.Parameter(torch.zeros(n_heads, 1, 1))
torch.nn.init.xavier_uniform_(self.gammas)
self._reset_parameters()
def _reset_parameters(self):
xavier_uniform_(self.k_linear.weight)
xavier_uniform_(self.v_linear.weight)
if self.kq_same is False:
xavier_uniform_(self.q_linear.weight)
if self.proj_bias:
constant_(self.k_linear.bias, 0.)
constant_(self.v_linear.bias, 0.)
if self.kq_same is False:
constant_(self.q_linear.bias, 0.)
constant_(self.out_proj.bias, 0.)
def forward(self, q, k, v, mask, zero_pad):
bs = q.size(0)
# perform linear operation and split into h heads
k = self.k_linear(k).view(bs, -1, self.h, self.d_k)
if self.kq_same is False:
q = self.q_linear(q).view(bs, -1, self.h, self.d_k)
else:
q = self.k_linear(q).view(bs, -1, self.h, self.d_k)
v = self.v_linear(v).view(bs, -1, self.h, self.d_k)
# transpose to get dimensions bs * h * sl * d_model
k = k.transpose(1, 2)
q = q.transpose(1, 2)
v = v.transpose(1, 2)
# calculate attention using function we will define next
gammas = self.gammas
scores = attention(q, k, v, self.d_k,
mask, self.dropout, zero_pad, gammas)
# concatenate heads and put through final linear layer
concat = scores.transpose(1, 2).contiguous()\
.view(bs, -1, self.d_model)
output = self.out_proj(concat)
return output
def attention(q, k, v, d_k, mask, dropout, zero_pad, gamma=None):
"""
This is called by Multi-head atention object to find the values.
"""
scores = torch.matmul(q, k.transpose(-2, -1)) / \
math.sqrt(d_k) # BS, 8, seqlen, seqlen
bs, head, seqlen = scores.size(0), scores.size(1), scores.size(2)
x1 = torch.arange(seqlen).expand(seqlen, -1).to(device)
x2 = x1.transpose(0, 1).contiguous()
with torch.no_grad():
scores_ = scores.masked_fill(mask == 0, -1e32)
scores_ = F.softmax(scores_, dim=-1) # BS,8,seqlen,seqlen
scores_ = scores_ * mask.float().to(device)
distcum_scores = torch.cumsum(scores_, dim=-1) # bs, 8, sl, sl
disttotal_scores = torch.sum(
scores_, dim=-1, keepdim=True) # bs, 8, sl, 1
position_effect = torch.abs(
x1-x2)[None, None, :, :].type(torch.FloatTensor).to(device) # 1, 1, seqlen, seqlen
# bs, 8, sl, sl positive distance
dist_scores = torch.clamp(
(disttotal_scores-distcum_scores)*position_effect, min=0.)
dist_scores = dist_scores.sqrt().detach()
m = nn.Softplus()
gamma = -1. * m(gamma).unsqueeze(0) # 1,8,1,1
# Now after do exp(gamma*distance) and then clamp to 1e-5 to 1e5
total_effect = torch.clamp(torch.clamp(
(dist_scores*gamma).exp(), min=1e-5), max=1e5)
scores = scores * total_effect
scores.masked_fill_(mask == 0, -1e32)
scores = F.softmax(scores, dim=-1) # BS,8,seqlen,seqlen
if zero_pad:
pad_zero = torch.zeros(bs, head, 1, seqlen).to(device)
scores = torch.cat([pad_zero, scores[:, :, 1:, :]], dim=2)
scores = dropout(scores)
output = torch.matmul(scores, v)
return output
class LearnablePositionalEmbedding(nn.Module):
def __init__(self, d_model, max_len=512):
super().__init__()
# Compute the positional encodings once in log space.
pe = 0.1 * torch.randn(max_len, d_model)
pe = pe.unsqueeze(0)
self.weight = nn.Parameter(pe, requires_grad=True)
def forward(self, x):
return self.weight[:, :x.size(Dim.seq), :] # ( 1,seq, Feature)
class CosinePositionalEmbedding(nn.Module):
def __init__(self, d_model, max_len=512):
super().__init__()
# Compute the positional encodings once in log space.
pe = 0.1 * torch.randn(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1).float()
div_term = torch.exp(torch.arange(0, d_model, 2).float() *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.weight = nn.Parameter(pe, requires_grad=False)
def forward(self, x):
return self.weight[:, :x.size(Dim.seq), :] # ( 1,seq, Feature)
AKT基于上下文的知识追踪代码
最新推荐文章于 2025-01-13 22:22:22 发布
文章详细介绍了使用PyTorch构建的注意力机制模型AKT,包括模块初始化、嵌入层、Transformer层、注意力机制以及位置编码方法。模型结构中包含多头注意力、层规范化、前馈神经网络和dropout等组件。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
PyTorch 2.6
PyTorch
Cuda
PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理
737

被折叠的 条评论
为什么被折叠?



