IEEE TMM 2020:细化超分辨网络,解决上采样引起的振荡

本文提出了一种名为CFSRCNN的细化超分辨网络,旨在解决上采样操作引起的训练振荡问题,提高图像超分辨率模型的稳定性和效率。CFSRCNN采用异构卷积和残差学习技术,通过级联网络结构融合LR和HR特征,实现在性能和计算效率之间的平衡。实验结果显示,CFSRCNN在多个数据集上表现出优秀的超分辨率性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文介绍IEEE TMM 2020 论文:用于解决上采样引起振荡的细化超分辨网络(Coarse-to-Fine CNN for Image Super-resolution),代码已开源

作者:田春伟,徐勇,左旺孟,张一博,费伦科,林嘉文

单位:哈工大&澳门大学&台湾清华大学

图像成像设备在拍照图像时常遭受到天气、硬件和环境等影响,导致拍摄出图像出现严重的失真,这严重限制后续高水平计算机视觉任务进行。现已有深度学习方法为了保证效率,一些方法都是通过在网络末端利用上采样操作来放大分辨率来获得高清图像,但这样操作会使训练过程发生振荡,从而使SR模型稳定性下降,这是真实相机设备无法容忍的。

对此,本文设计一种由粗到细的超分辨CNN(Coarse-to-fine SR CNN, CFSRCNN)用于解决这个问题。CFSRCNN根据SR任务的属性,通过充分利用网络层次低频特征和高频特征来增加SR模型的稳定性,同时该网络能在SR性能和效率之间做权衡。

1

   

工作原理

CFSRCNN的工作原理如下&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值