二叉树查找树声明:
<span style="font-size:14px;">struct treeNode;
typedef struct treeNode *Position;
typedef struct treeNode *searchTree;
struct treeNode
{
ElementType Element;
searchTree Left;
searchTree Right;
};</span>建立一个空树的例程
searchTree makeEmpty(searchTree T)
{
if(T != NULL)
{
makeEmpty(T->Left);
makeEmpty(T->Right);
free(T);
}
return NULL;
}二叉查找树的find操作
Position Find(ElementType X, searchTree T)
{
if(T == NULL)
return NULL;
if(X < T->Element)
return Find(X, T->Left);
else if(X > T->Element)
return Find(X,T->Right);
else
return T;
}findMin的递归实现
Position findMin(searchTree T)
{
if(T == NULL)
return NULL;
else if(T->Left == NULL)
return T;
else
return findMin(T->Left);
}findMax的非递归实现
Position findMax(searchTree)
{
if(T != NULL)
while(T->Right != NULL)
T = T->Right;
return T;
}二叉树插入例程
searchTree Insert(ElementType X, searchTree T)
{
if(T == NULL)
{
T = malloc(sizeof(struct treeNode));
if(T == NULL)
FatalError("Out of space!");
else
{
T->Element = X;
T->Left = T->Right = NULL;
}
}
else if(X < T->Element)
T->Left = Insert(X, T->Left);
else if(X > T->Element)
T->Right = Insert(X, T->Right);
return T;
}
二叉查找树的删除例程
searchTree Delete(ElementType X, searchTree T)
{
Position TmpCell;
if(T == NULL)
Error("Element not found");
else if(X < T->Element)
T->Left = Delete(X, T->Left);
else if(X > T->Element)
T->Right = Delete(X, T->Right);
else if(T->Left && T->Right)
{
TmpCell = findMin(T->Right);
T->Element = TmpCell->Element;
T->Right = Delete(T->Element, T->Right);
}
else
{
TmpCell = T;
if(T->Left == NULL)
T = T->Right;
else if(T->Right == NULL)
T = T->Left;
free(TmpCell);
}
return T;
}
本文详细介绍了二叉查找树的基本操作,包括建立空树、查找、最小元素和最大元素定位、插入及删除等核心算法,并提供了具体的实现代码。
1956

被折叠的 条评论
为什么被折叠?



