iterator和circulator的使用
翻译,原文连接
本文包括:
- 如何使用迭代器 (iterator)
- 如何使用循环迭代器 (circulator)
本文将以一个简单网格平滑方法来说明如何使用 iterators 和 circulators. 这两种迭代器分别提供了遍历一个网格的所有顶点和遍历一个顶点的所有相邻点的方法(即 one-ring neighbors). 详细说明见 Mesh Iterators and Circulators.
首先定义网格类型,三角网格定义如下
#include <OpenMesh/Core/Mesh/TriMesh_ArrayKernelT.hh>
typedef OpenMesh::TriMesh_ArrayKernelT<> MyMesh;
这里从文件中读取网格
if ( ! OpenMesh::IO::read_mesh(mesh, argv[2]) )
网格平滑可以分为两步
- 对于每一个顶点,计算其所有相邻点的重心坐标
- 对于每一个顶点,将其坐标设置为第一步得到的重心坐标
这可以利用顶点迭代器 (vertex iterators) 来实现,vertices_begin()
和 verices_end()
分别提供了开始和末尾的 iterator
MyMesh::VertexVertexIter vv_it;
for (vv_it=mesh.vv_iter( *v_it ); vv_it.is_valid(); ++vv_it)
计算顶点重心的代码如下
std::vector<MyMesh::Point> cogs;
for (v_it=mesh.vertices_begin(); v_it!=v_end; ++v_it)
{
cog[0] = cog[1] = cog[2] = valence = 0.0;
for (vv_it=mesh.vv_iter( *v_it ); vv_it.is_valid(); ++vv_it)
{
cog += mesh.point( *vv_it );
++valence;
}
cogs.push_back(cog / valence);
}
计算完重心后,就可以将顶点坐标设置为重心坐标。完整代码如下
#include <iostream>
#include <vector>
// -------------------- OpenMesh
#include <OpenMesh/Core/IO/MeshIO.hh>
#include <OpenMesh/Core/Mesh/TriMesh_ArrayKernelT.hh>
typedef OpenMesh::TriMesh_ArrayKernelT<> MyMesh;
int main(int argc, char **argv)
{
MyMesh mesh;
// check command line options
if (argc != 4)
{
std::cerr << "Usage: " << argv[0] << " #iterations infile outfile\n";
return 1;
}
// read mesh from stdin
if ( ! OpenMesh::IO::read_mesh(mesh, argv[2]) )
{
std::cerr << "Error: Cannot read mesh from " << argv[2] << std::endl;
return 1;
}
// this vector stores the computed centers of gravity
std::vector<MyMesh::Point> cogs;
std::vector<MyMesh::Point>::iterator cog_it;
cogs.reserve(mesh.n_vertices());
// smoothing mesh argv[1] times
MyMesh::VertexIter v_it, v_end(mesh.vertices_end());
MyMesh::VertexVertexIter vv_it;
MyMesh::Point cog;
MyMesh::Scalar valence;
unsigned int i, N(atoi(argv[1]));
for (i=0; i < N; ++i)
{
cogs.clear();
for (v_it=mesh.vertices_begin(); v_it!=v_end; ++v_it)
{
cog[0] = cog[1] = cog[2] = valence = 0.0;
for (vv_it=mesh.vv_iter( *v_it ); vv_it.is_valid(); ++vv_it)
{
cog += mesh.point( *vv_it );
++valence;
}
cogs.push_back(cog / valence);
}
for (v_it=mesh.vertices_begin(), cog_it=cogs.begin();
v_it!=v_end; ++v_it, ++cog_it)
if ( !mesh.is_boundary( *v_it ) )
mesh.set_point( *v_it, *cog_it );
}
// write mesh to stdout
if ( ! OpenMesh::IO::write_mesh(mesh, argv[3]) )
{
std::cerr << "Error: cannot write mesh to " << argv[3] << std::endl;
return 1;
}
return 0;
}