题目链接:点击这里
题意:给出一个树,每一个节点对应另一个图的一条边。每次询问给出一个集合,将集合中所有点以及这些点的所有祖先对应的边在图上添上(原本图上没有边),求此时的联通分量数。
图上的点比较少,暗示着能够暴力处理。直接按照dfs顺序,记录下树上每一个点到根这些边加在图上时的并查集状态。然后询问的时候直接把所有并查集状态合并。
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <vector>
#include <cstring>
#include <map>
#include <set>
#include <bitset>
#include <queue>
using namespace std;
#define maxn 10005
int fa[maxn][505], cnt[maxn];
int n, m, q;
vector <int> g[maxn];
int e[maxn][2];
int Find (int i, int x) {
return fa[i][x] == x ? x : fa[i][x] = Find (i, fa[i][x]);
}
void dfs (int u, int father) {
if (father != u) {
for (int i = 1; i <= n; i++) fa[u][i] = fa[father][i];
cnt[u] = cnt[father];
}
int p1 = Find (u, e[u][0]), p2 = Find (u, e[u][1]);
if (p1 != p2) {
fa[u][p1] = p2;
cnt[u]--;
}
int sz = g[u].size ();
for (int i = 0; i < sz; i++) {
int v = g[u][i];
dfs (v, u);
}
}
int main () {
int t, kase = 0;
scanf ("%d", &t);
while (t--) {
scanf ("%d%d", &n, &m);
for (int i = 1; i <= m; i++) g[i].clear ();
for (int i = 2; i <= m; i++) {
int father; scanf ("%d", &father);
g[father].push_back (i);
}
for (int i = 1; i <= m; i++) {
scanf ("%d%d", &e[i][0], &e[i][1]);
}
cnt[1] = n;
for (int i = 1; i <= n; i++) fa[1][i] = i;
dfs (1, 1);
scanf ("%d", &q);
printf ("Case #%d:\n", ++kase);
while (q--) {
int num, u; scanf ("%d", &num);
scanf ("%d", &u);
for (int i = 1; i <= n; i++) fa[m+1][i] = fa[u][i];
int tmp = cnt[u];
for (int i = 2; i <= num; i++) {
scanf ("%d", &u);
for (int j = 1; j <= n; j++) {
int x = Find (m+1, j), y = Find (u, j);
int p1 = Find (m+1, x), p2 = Find (m+1, y);
if (p1 != p2) {
tmp--;
fa[m+1][p1] = p2;
}
}
}
printf ("%d\n", tmp);
}
}
return 0;
}