Special equations
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 435 Accepted Submission(s): 274
Special Judge
Problem Description
Let f(x) = anxn +...+ a1x +a0, in which ai (0 <= i <= n) are all known integers. We call f(x) 0 (mod m) congruence equation. If m is a composite, we can factor m into powers of primes and solve every
such single equation after which we merge them using the Chinese Reminder Theorem. In this problem, you are asked to solve a much simpler version of such equations, with m to be prime's square.
Input
The first line is the number of equations T, T<=50.
Then comes T lines, each line starts with an integer deg (1<=deg<=4), meaning that f(x)'s degree is deg. Then follows deg integers, representing an to a0 (0 < abs(an) <= 100; abs(ai) <= 10000 when deg >= 3, otherwise abs(ai) <= 100000000, i<n). The last integer is prime pri (pri<=10000).
Remember, your task is to solve f(x) 0 (mod pri*pri)
Then comes T lines, each line starts with an integer deg (1<=deg<=4), meaning that f(x)'s degree is deg. Then follows deg integers, representing an to a0 (0 < abs(an) <= 100; abs(ai) <= 10000 when deg >= 3, otherwise abs(ai) <= 100000000, i<n). The last integer is prime pri (pri<=10000).
Remember, your task is to solve f(x) 0 (mod pri*pri)
Output
For each equation f(x) 0 (mod pri*pri), first output the case number, then output anyone of x if there are many x fitting the equation, else output "No solution!"
Sample Input
4 2 1 1 -5 7 1 5 -2995 9929 2 1 -96255532 8930 9811 4 14 5458 7754 4946 -2210 9601
Sample Output
Case #1: No solution! Case #2: 599 Case #3: 96255626 Case #4: No solution!
题意:求一个方程模m^2为0是否有解。
因为m是素数,所以方程模m^2为0必然需要方程模m为0,而所有的x(x>=m)模m为0,必
然有(x-m)模m为0.
所以就可以寻找[0,m-1]中f(x)模m为0的x,然后判断x+m,x+2m....是不是满足。
#include <iostream>
#include <algorithm>
#include <string.h>
#include <stdio.h>
#include <map>
#include <vector>
#include <math.h>
#include <queue>
using namespace std;
#define maxn 11
int n;
long long a[maxn];
long long m, mm;
long long f1 (long long x) {
long long ans = 0;
for (int i = n; i >= 0; i--) {
long long cur = 1;
for (int j = 0; j < i; j++) cur *= x, cur %= m;
ans += cur*a[i];
ans = (ans%m+m)%m;
}
return ans;
}
long long f2 (long long x) {
long long ans = 0;
for (int i = n; i >= 0; i--) {
long long cur = 1;
for (int j = 0; j < i; j++) cur *= x, cur %= mm;
ans += cur*a[i];
ans = (ans%mm+mm)%mm;
}
return ans;
}
int main () {
//freopen ("in.txt", "r", stdin);
int t, kase = 0;
scanf ("%d", &t);
while (t--) {
scanf ("%d", &n);
for (int i = n; i >= 0; i--) {
scanf ("%lld", &a[i]);
}
scanf ("%lld", &m);
mm = m*m;
printf ("Case #%d: ", ++kase);
long long x, ans;
for (x = 0; x < m; x++) {
if (f1 (x) == 0) {
for (ans = x; ans < m*m; ans += m) {
if (f2 (ans) == 0) {
printf ("%lld\n", ans);
goto out;
}
}
}
}
printf ("No solution!\n");
out: ;
}
return 0;
}