题意:给你一个n×n的邻接矩阵,以及给定整数k。求出图中所有经过边数为k的最短路径以及边数为k的最短路径条数。
思路:边数为k的路径条数直接用矩阵快速幂求得。更新最短路的过程中随即更新即可。
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define __ ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
const int maxn = 155 + 10;
const int maxm = 1e4 + 10;
const ll mod = 1e9 + 7;
ll n, m, k;
struct matrix {
ll a1[maxn][maxn], a2[maxn][maxn];
matrix operator*(const matrix &x) {
matrix c;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
c.a1[i][j] = 1e18;
for (int k = 1; k <= n; ++k) {
if (c.a1[i][j] > a1[i][k] + x.a1[k][j]) {
c.a1[i][j] = a1[i][k] + x.a1[k][j];
c.a2[i][j] = (a2[i][k] * x.a2[k][j]) % mod;
} else if (c.a1[i][j] == a1[i][k] + x.a1[k][j]) {
c.a2[i][j] = (c.a2[i][j] + a2[i][k] * x.a2[k][j]) % mod;
}
}
}
}
return c;
}
matrix &operator=(const matrix &x) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
a1[i][j] = x.a1[i][j];
a2[i][j] = x.a2[i][j];
}
}
return *this;
}
};
matrix A, ans;
int main() {
__;
cin >> n >> m >> k;
memset(A.a1, 63, sizeof A.a1);
memset(A.a2, 0, sizeof A.a2);
for (int i = 1; i <= m; ++i) {
int x, y, z;
cin >> x >> y >> z;
A.a1[x][y] = A.a1[y][x] = z;
A.a2[x][y] = A.a2[y][x] = 1;
}
memset(ans.a1, 0, sizeof ans.a1);
memset(ans.a2, 0, sizeof ans.a2);
bool ok = 0;
while (k) {
if (k & 1) {
if (ok)ans = ans * A;
else {
ans = A;
ok = 1;
}
}
A = A * A;
k >>= 1;
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
if (ans.a1[i][j] > 1e9) {
cout << 'X' << ' ' << ans.a2[i][j] << ' ';
} else cout << ans.a1[i][j] << ' ' << ans.a2[i][j] << ' ';
}
cout << endl;
}
return 0;
}