poj2299 Ultra-QuickSort 树状数组

本文介绍了一种使用树状数组优化Ultra-QuickSort算法中逆序对计数的方法。通过两次排序和树状数组更新及查询操作,实现了高效地计算输入序列排序所需的最小交换次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
9 1 0 5 4 ,

Ultra-QuickSort produces the output 
0 1 4 5 9 .

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

5
9
1
0
5
4
3
1
2
3
0

Sample Output

6
0


求逆序对 用树状数组 这样每次是 log(n)的更新

一定要理解树状数组的过程 直接拍板是不好的 具体的树状数组的实现我会另转载一个文章,心得蛮不错的,理解之后会觉得非常的这个算法很有效。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=500050;
ll n;
ll c[N];
struct node
{
    ll order,dig;
}a[N];
ll lowbit(ll x)
{
   return (x&(-x));
}
ll calc(ll x)
{
    ll sum=0;
    for(;x;x-=lowbit(x))
    {
        sum+=c[x];
    }
    return sum;
}
void update(ll x,ll val)
{
    while(x<=n)
    {
        c[x]+=val;
        x+=lowbit(x);
    }
}
bool cmp1(const node &a,const node &b)
{
    return a.dig<b.dig;
}
bool cmp2(const node &a,const node &b)
{
    return a.order<b.order;
}
int main()
{
    while(scanf("%lld",&n)&&n)
    {
        ll sum=0;
        memset(c,0,sizeof(c));
        for(int i=1;i<=n;i++)
        {
            scanf("%lld",&a[i].dig);
            a[i].order=i;
        }
        sort(a+1,a+n+1,cmp1);
        for(int i=1;i<=n;i++)
        {
            a[i].dig=i;
        }
        sort(a+1,a+n+1,cmp2);
        //离散完毕
        for(int i=1;i<=n;i++)
        {
            update(a[i].dig,1);
            sum+=i-calc(a[i].dig);
        }
        printf("%lld\n",sum);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值