Description

Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤
a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
求逆序对 用树状数组 这样每次是 log(n)的更新
一定要理解树状数组的过程 直接拍板是不好的 具体的树状数组的实现我会另转载一个文章,心得蛮不错的,理解之后会觉得非常的这个算法很有效。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=500050;
ll n;
ll c[N];
struct node
{
ll order,dig;
}a[N];
ll lowbit(ll x)
{
return (x&(-x));
}
ll calc(ll x)
{
ll sum=0;
for(;x;x-=lowbit(x))
{
sum+=c[x];
}
return sum;
}
void update(ll x,ll val)
{
while(x<=n)
{
c[x]+=val;
x+=lowbit(x);
}
}
bool cmp1(const node &a,const node &b)
{
return a.dig<b.dig;
}
bool cmp2(const node &a,const node &b)
{
return a.order<b.order;
}
int main()
{
while(scanf("%lld",&n)&&n)
{
ll sum=0;
memset(c,0,sizeof(c));
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i].dig);
a[i].order=i;
}
sort(a+1,a+n+1,cmp1);
for(int i=1;i<=n;i++)
{
a[i].dig=i;
}
sort(a+1,a+n+1,cmp2);
//离散完毕
for(int i=1;i<=n;i++)
{
update(a[i].dig,1);
sum+=i-calc(a[i].dig);
}
printf("%lld\n",sum);
}
return 0;
}