tf.train.Example的用法(转)

本文记录了tf.train.Example的用法,它主要用于将数据处理成二进制,以提升IO效率和方便管理数据。按调用顺序介绍了使用tf.train.Example涉及的几个类,包括tf.train.BytesList等、tf.train.Feature、tf.train.Features,最后说明了tf.train.Example的使用及序列化、反序列化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

最近在看到一个代码时,里面用到了tf.train.Example,于是学习了其用法,这里记录一下,也希望能对其他朋友有用。
另外,本文涉及的代码基于python 3.6.5 tensorflow 1.8.0
tf.train.Example主要用在将数据处理成二进制方面,一般是为了提升IO效率和方便管理数据。下面按调用顺序介绍使用tf.train.Example涉及的几个类。

tf.train.BytesList等

现在我们有一个data.txt文件,内容如下:

21
This is a test data file.
We will convert this text file to bin file.

 
  • 1
  • 2
  • 3

文件中第一行是个整数,第二行和第三行都是字符串。这是我们处理的原始数据。
我们先使用下面的代码将数据读进来:

import struct
import tensorflow as tf

def read_text_file(text_file):
lines = []
with open(text_file, “r”) as f:
for line in f:
lines.append(line.strip())
return lines

def text_to_binary(in_file, out_file):
inputs = read_text_file(in_file)

<span class="token keyword">with</span> <span class="token builtin">open</span><span class="token punctuation">(</span>out_file<span class="token punctuation">,</span> <span class="token string">'wb'</span><span class="token punctuation">)</span> <span class="token keyword">as</span> writer<span class="token punctuation">:</span>
	<span class="token keyword">pass</span>

if name == main:
text_to_binary(‘data.txt’, ‘data.bin’)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

格式化原始数据可以使用tf.train.BytesList tf.train.Int64List tf.train.FloatList三个类。这三个类都有实例属性value用于我们将值传进去,一般tf.train.Int64List tf.train.FloatList对应处理整数和浮点数,tf.train.BytesList用于处理其他类型的数据。
这里第一行数据我们可以用tf.train.Int64List处理,而第二、第三行数据我们使用tf.train.BytesList处理。下面我们看代码实现,我们将上述代码的pass替换如下:

        data_id = tf.train.Int64List(value=[int(inputs[0])])
        data = tf.train.BytesList(value=[bytes(' '.join(inputs[1:]), encoding='utf-8')])

 
  • 1
  • 2

注意到,tf.train.Int64List的value值需要是int数据的列表,而tf.train.BytesList的value值需要是bytes数据的列表。
我们分别打印data_id和data的值可以看到:

value: 21

value: “This is a test data file. We will convert this text file to bin file.”

  • 1
  • 2
  • 3

这样我们就完成了第一步操作。

tf.train.Feature

tf.train.Feature有三个属性为tf.train.bytes_list tf.train.float_list tf.train.int64_list,显然我们只需要根据上一步得到的值来设置tf.train.Feature的属性就可以了,如下所示:

tf.train.Feature(int64_list=data_id)
tf.train.Feature(bytes_list=data)

 
  • 1
  • 2

tf.train.Features

从名字来看,我们应该能猜出tf.train.Featurestf.train.Feature的复数,事实上tf.train.Features有属性为feature,这个属性的一般设置方法是传入一个字典,字典的key是字符串(feature名),而值是tf.train.Feature对象。因此,我们可以这样得到tf.train.Features对象:

        feature_dict = {
            "data_id": tf.train.Feature(int64_list=data_id),
            "data": tf.train.Feature(bytes_list=data)
        }
        features = tf.train.Features(feature=feature_dict)

 
  • 1
  • 2
  • 3
  • 4
  • 5

tf.train.Example

终于到我们的主角了。tf.train.Example有一个属性为features,我们只需要将上一步得到的结果再次当做参数传进来即可。
另外,tf.train.Example还有一个方法SerializeToString()需要说一下,这个方法的作用是把tf.train.Example对象序列化为字符串,因为我们写入文件的时候不能直接处理对象,需要将其转化为字符串才能处理。
当然,既然有对象序列化为字符串的方法,那么肯定有从字符串反序列化到对象的方法,该方法是FromString(),需要传递一个tf.train.Example对象序列化后的字符串进去做为参数才能得到反序列化的对象。
在我们这里,只需要构建tf.train.Example对象并序列化就可以了,这一步的代码为:

        example = tf.train.Example(features=features)
        example_str = example.SerializeToString()

 
  • 1
  • 2

好了,那么现在我们看一下将data.txt处理成data.bin的完整代码:

import struct
import tensorflow as tf

def read_text_file(text_file):
lines = []
with open(text_file, “r”) as f:
for line in f:
lines.append(line.strip())
return lines

def text_to_binary(in_file, out_file):
inputs = read_text_file(in_file)

<span class="token keyword">with</span> <span class="token builtin">open</span><span class="token punctuation">(</span>out_file<span class="token punctuation">,</span> <span class="token string">'wb'</span><span class="token punctuation">)</span> <span class="token keyword">as</span> writer<span class="token punctuation">:</span>
    data_id <span class="token operator">=</span> tf<span class="token punctuation">.</span>train<span class="token punctuation">.</span>Int64List<span class="token punctuation">(</span>value<span class="token operator">=</span><span class="token punctuation">[</span><span class="token builtin">int</span><span class="token punctuation">(</span>inputs<span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">]</span><span class="token punctuation">)</span>
    data <span class="token operator">=</span> tf<span class="token punctuation">.</span>train<span class="token punctuation">.</span>BytesList<span class="token punctuation">(</span>value<span class="token operator">=</span><span class="token punctuation">[</span><span class="token builtin">bytes</span><span class="token punctuation">(</span><span class="token string">' '</span><span class="token punctuation">.</span>join<span class="token punctuation">(</span>inputs<span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">:</span><span class="token punctuation">]</span><span class="token punctuation">)</span><span class="token punctuation">,</span> encoding<span class="token operator">=</span><span class="token string">'utf-8'</span><span class="token punctuation">)</span><span class="token punctuation">]</span><span class="token punctuation">)</span>

    feature_dict <span class="token operator">=</span> <span class="token punctuation">{</span>
        <span class="token string">"data_id"</span><span class="token punctuation">:</span> tf<span class="token punctuation">.</span>train<span class="token punctuation">.</span>Feature<span class="token punctuation">(</span>int64_list<span class="token operator">=</span>data_id<span class="token punctuation">)</span><span class="token punctuation">,</span>
        <span class="token string">"data"</span><span class="token punctuation">:</span> tf<span class="token punctuation">.</span>train<span class="token punctuation">.</span>Feature<span class="token punctuation">(</span>bytes_list<span class="token operator">=</span>data<span class="token punctuation">)</span>
    <span class="token punctuation">}</span>
    features <span class="token operator">=</span> tf<span class="token punctuation">.</span>train<span class="token punctuation">.</span>Features<span class="token punctuation">(</span>feature<span class="token operator">=</span>feature_dict<span class="token punctuation">)</span>

    example <span class="token operator">=</span> tf<span class="token punctuation">.</span>train<span class="token punctuation">.</span>Example<span class="token punctuation">(</span>features<span class="token operator">=</span>features<span class="token punctuation">)</span>
    example_str <span class="token operator">=</span> example<span class="token punctuation">.</span>SerializeToString<span class="token punctuation">(</span><span class="token punctuation">)</span>

    str_len <span class="token operator">=</span> <span class="token builtin">len</span><span class="token punctuation">(</span>example_str<span class="token punctuation">)</span>

    writer<span class="token punctuation">.</span>write<span class="token punctuation">(</span>struct<span class="token punctuation">.</span>pack<span class="token punctuation">(</span><span class="token string">'H'</span><span class="token punctuation">,</span> str_len<span class="token punctuation">)</span><span class="token punctuation">)</span>
    writer<span class="token punctuation">.</span>write<span class="token punctuation">(</span>struct<span class="token punctuation">.</span>pack<span class="token punctuation">(</span><span class="token string">'%ds'</span> <span class="token operator">%</span> str_len<span class="token punctuation">,</span> example_str<span class="token punctuation">)</span><span class="token punctuation">)</span>

if name == main:
text_to_binary(‘data.txt’, ‘data.bin’)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

代码里还涉及到了struct模块,关于struct模块的用法可以参考我的这篇文章:Python二进制数据处理

      </div>
      <link href="https://csdnimg.cn/release/phoenix/mdeditor/markdown_views-258a4616f7.css" rel="stylesheet">
              </div>
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值