Hyperledger Fabric Java SDK最新教程

本文汇总了Hyperledger Fabric Java SDK的精选教程,涵盖了官方文档、链码访问、快速上手、基础教程等多个方面,帮助开发者快速理解和掌握Fabric Java SDK的使用,包括链码调用、TLS通信、网络创建与部署等关键操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fabric Java SDK是Fabric区块链官方提供的用于Java应用开发的SDK,全称为Fabric-sdk-java,网上可用资料不多,本文列出了精心整理的针对Fabric Java SDK的最新精选教程。

如果希望快速掌握Fabric Java SDK的使用方法,建议访问汇智网的在线互动教程:

1、官方文档

使用Fabric Java SDK开发必备的手册,从Java SDK源代码注释生成的每个接口、类和方法的简要说明,聊胜于无,但是要指望它达到真正理解并掌握Fabric Java SDK的使用方法还远远不够。

链接:https://sdkjavadocs.github.io/

2、Fabric-sdk-java链码访问快速上手教程

非常简洁的fabric java sdk中文起步教程,hello-world级别,适合快速熟悉fabric java sdk的使用方法。使用的fabric-sdk-java版本为1.4.1。

链接:http://blog.hubwiz.com/2019/04/23/fabric-sdk-java-hello-world/

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值