xgboost 中的gain freq, cover

本文介绍了XGBoost中评估特征重要性的三个指标:Gain、Cover和Frequency。Gain衡量特征对模型准确性的相对贡献,是最重要的特征解释指标;Cover表示特征涉及的观测值相对数量;Frequency则是特征在模型树中出现的次数占比,不推荐单独使用作为重要性依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

assuming that you're using xgboost to fit boosted treesfor binary classification. The importance matrix is actually a data.tableobject with the first column listing the names of all the features actuallyused in the boosted trees.

The meaning of the importance data table is as follows:

  1. The Gain implies the relative contribution of the corresponding feature to the model calculated by taking each feature's contribution for each tree in the model. A higher value of this metric when compared to another feature implies it is more important for generating a prediction.
  2. The Cover metric means the relative number of observations related to this feature. For example, if you have 100 observations, 4 features and 3 trees, and suppose feature1 is used to decide the leaf node for 10, 5, and 2 ob
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值