PAT.A1052 Linked List Sorting

本文介绍了一种链表排序算法的实现方法,通过遍历链表并利用自定义比较函数进行节点排序,确保链表按升序排列。文章详细展示了如何读取链表数据,并在输出时保持正确的排序顺序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A linked list consists of a series of structures, which are not necessarily adjacent in memory. We assume that each structure contains an integer key and a Next pointer to the next structure. Now given a linked list, you are supposed to sort the structures according to their key values in increasing order.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive N (< 10^5^) and an address of the head node, where N is the total number of nodes in memory and the address of a node is a 5-digit positive integer. NULL is represented by -1.

Then N lines follow, each describes a node in the format:

Address Key Next

where Address is the address of the node in memory, Key is an integer in [-10^5^, 10^5^], and Next is the address of the next node. It is guaranteed that all the keys are distinct and there is no cycle in the linked list starting from the head node.

Output Specification:

For each test case, the output format is the same as that of the input, where N is the total number of nodes in the list and all the nodes must be sorted order.

Sample Input:

5 00001
11111 100 -1
00001 0 22222
33333 100000 11111
12345 -1 33333
22222 1000 12345

Sample Output:

5 12345
12345 -1 00001
00001 0 11111
11111 100 22222
22222 1000 33333
33333 100000 -1
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<utility>
#include<stack>
#include<queue>
using namespace std;
const int maxn = 100010;
struct node {
	int add, data, next;
	int xxx;
}a[100010];
bool cmp(node a, node b) {
	if (a.xxx == 0 || b.xxx == 0)
		return a.xxx > b.xxx;
	else
		return a.data < b.data;
}
int main() {
	int n,s1,count=0;
	scanf("%d%d", &n,&s1);
	for (int i = 0; i < n; i++)
		a[i].xxx =0;
	for (int i = 0; i < n; i++) {
		int t1, t2,t3;
		scanf("%d%d%d", &t1,&t2,&t3);
		a[t1].add = t1;
		a[t1].data = t2;
		a[t1].next = t3;
	}
	for (int p = s1; p != -1; p = a[p].next) {
		a[p].xxx = 1; 
		count++;
	}
	if (count == 0)
		printf("0 -1\n");
	else {
		sort(a, a + 100010, cmp);
		s1 = a[0].add;
		printf("%d %05d\n", count, s1);
		for (int i = 0; i < count-1; i++) {
			a[i].next = a[i + 1].add;
			printf("%05d %d %05d\n", a[i].add, a[i].data, a[i].next);
		}
		printf("%05d %d -1", a[count - 1].add, a[count - 1].data);
			//printf("%d %d %d\n", a[i].add, a[i].data, a[i].next);
	}
		
	return 0;
}
自适应链表是一种数据结构,它能够自动调整其内部节点的数量以优化存储效率,特别是在插入和删除操作频繁的情况下。传统的链表需要预先分配一定数量的节点,而自适应链表则动态地管理节点,当内存空间不足时添加新节点,当内存充足且连续时合并节点以减少空闲空间。 下面是一个简单的自适应链表(Adaptive Array List)的Python实现概述: ```python class Node: def __init__(self, value): self.value = value self.next = None self.prev = None class AdaptiveList: def __init__(self): self.head = None self.tail = None self.size = 0 self.capacity = 16 # 初始容量 def append(self, value): if not self.head: self.head = self.tail = Node(value) else: new_node = Node(value) self.tail.next = new_node new_node.prev = self.tail self.tail = new_node self.size += 1 if self.size > self.capacity * 2: # 当大小超过两倍容量时扩容 self.resize(2 * self.capacity) def resize(self, new_capacity): old_head = self.head self.head = self.tail = Node(None) # 创建新的头和尾 self.tail.next = old_head old_head.prev = self.tail for _ in range(self.size): current = old_head old_head = old_head.next self.append(current.value) # 将所有元素移动到新链表 # 使用示例 alist = AdaptiveList() alist.append(1) alist.append(2) ... ``` 在这个实现中,`append`方法会检查是否需要扩容。如果链表已满,就创建一个新的更大的链表,然后将原有链表的所有节点复制到新链表。这样,我们可以在保持高效的同时避免浪费内存。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值