Given N rational numbers in the form "numerator/denominator", you are supposed to calculate their sum.
Input Specification:
Each input file contains one test case. Each case starts with a positive integer N (<=100), followed in the next line N rational numbers "a1/b1 a2/b2 ..." where all the numerators and denominators are in the range of "long int". If there is a negative number, then the sign must appear in front of the numerator.
Output Specification:
For each test case, output the sum in the simplest form "integer numerator/denominator" where "integer" is the integer part of the sum, "numerator" < "denominator", and the numerator and the denominator have no common factor. You must output only the fractional part if the integer part is 0.
Sample Input 1:
5
2/5 4/15 1/30 -2/60 8/3
Sample Output 1:
3 1/3
Sample Input 2:
2
4/3 2/3
Sample Output 2:
2
Sample Input 3:
3
1/3 -1/6 1/8
Sample Output 3:
7/24
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <iostream>
using namespace std;
struct frac {
int up, down;
}a[110],sum;
int gcd(int a, int b) {
if (b == 0) return a;
else return gcd(b, a%b);
}
frac huajian(frac f) {
if (f.down < 0) {
f.up = -f.up;
f.down = -f.down;
}
if (f.up == 0) {
f.down = 1;
}
else {
int d = gcd(abs(f.up), abs(f.down));
f.up /= d;
f.down /= d;
}
return f;
}
int main(){
int n;
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d/%d", &a[i].up, &a[i].down);
if (i == 0) {
sum.up = a[i].up;
sum.down = a[i].down;
}
else {
sum.up = sum.up*a[i].down + a[i].up*sum.down;
sum.down = a[i].down*sum.down;
}
}
//printf("%d/%d", sumup, sumdo);
sum=huajian(sum);
if (sum.down == 1) printf("%lld", sum.up);
else if (abs(sum.up) > sum.down) {
printf("%d %d/%d", sum.up / sum.down, abs(sum.up)%sum.down, sum.down);
}
else printf("%d/%d", sum.up, sum.down);
return 0;
}