Given any permutation of the numbers {0, 1, 2,..., N-1}, it is easy to sort them in increasing order. But what if Swap(0, *) is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (<=105) followed by a permutation sequence of {0, 1, ..., N-1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:10 3 5 7 2 6 4 9 0 8 1Sample Output:
9
有2个点需要注意,数据录入的时候要直接记录数据的位置,不要按顺序录入数据,其次是搜索不在本位的数据时不要每次都从头搜索,不然一定会超时。
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
using namespace std;
int a[100010];
int main(){
int n,count=0,j=1,num;
bool f=1;
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d", &num);
a[num] = i;
}
while(f) {
f = 0;
if (a[0] != 0) {
swap(a[0],a[a[0]] );
count++;
f = 1;
}
else {
while(j<n) {
if (a[j] != j) {
swap(a[0], a[j]);
count++;
f = 1;
break;
}
j++;
}
}
}
printf("%d", count);
return 0;
}