GO-结构体无继承之曲线救国

本文介绍了Go语言中结构体内嵌的概念及其使用方式,包括如何访问内嵌结构体的成员及调用其方法。

结构体内嵌类型

我们可以在一个结构体内部定义另外一个结构体类型的成员。例如iPhone也是Phone,我们看下例子:

package main

import (
    "fmt"
)

type Phone struct {
    price int
    color string
}

type IPhone struct {
    phone Phone
    model string
}

func main() {
    var p IPhone
    p.phone.price = 5000
    p.phone.color = "Black"
    p.model = "iPhone 5"
    fmt.Println("I have a iPhone:")
    fmt.Println("Price:", p.phone.price)
    fmt.Println("Color:", p.phone.color)
    fmt.Println("Model:", p.model)
}

输出结果为

I have a iPhone:
Price: 5000
Color: Black
Model: iPhone 5

在上面的例子中,我们在结构体IPhone里面定义了一个Phone变量phone,然后我们可以像正常的访问结构体成员一样访问phone的成员数据。但是我们原来的意思是“iPhone也是(is-a)Phone”,而这里的结构体IPhone里面定义了一个phone变量,给人的感觉就是“iPhone有一个(has-a)Phone”,挺奇怪的。当然Go也知道这种方式很奇怪,所以支持如下做法:

package main

import (
    "fmt"
)

type Phone struct {
    price int
    color string
}

type IPhone struct {
    Phone
    model string
}

func main() {
    var p IPhone
    p.price = 5000
    p.color = "Black"
    p.model = "iPhone 5"
    fmt.Println("I have a iPhone:")
    fmt.Println("Price:", p.price)
    fmt.Println("Color:", p.color)
    fmt.Println("Model:", p.model)
}

输出结果为

I have a iPhone:
Price: 5000
Color: Black
Model: iPhone 5

在这个例子中,我们定义IPhone结构体的时候,不再定义Phone变量直接把结构体Phone类型定义在那里。然后IPhone就可以像访问直接定义在自己结构体里面的成员一样访问Phone的成员

上面的例子中,我们演示了结构体的内嵌类型以及内嵌类型的成员访问,除此之外,假设结构体A内部定义了一个内嵌结构体B,那么A同时也可以调用所有定义在B上面的函数。

package main

import (
    "fmt"
)

type Phone struct {
    price int
    color string
}

func (phone Phone) ringing() {
    fmt.Println("Phone is ringing...")
}

type IPhone struct {
    Phone
    model string
}

func main() {
    var p IPhone
    p.price = 5000
    p.color = "Black"
    p.model = "iPhone 5"
    fmt.Println("I have a iPhone:")
    fmt.Println("Price:", p.price)
    fmt.Println("Color:", p.color)
    fmt.Println("Model:", p.model)

    p.ringing()
}

输出结果为:

I have a iPhone:
Price: 5000
Color: Black
Model: iPhone 5
Phone is ringing...

 

内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值