UVa 332 - Rational Numbers from Repeating Fractions

題目:已知一個分數的小數形式和循環節長度,求分數。

分析:數論。利用題目給的公式直接求解即可。

            處理過程中直接使用整數計算

            然後對分子分母計算約分即可。

說明:發現並沒有讀過多少書╮(╯▽╰)╭。

#include <cstdio>

int gcd(int a, int b)
{
	return a%b?gcd(b, a%b):b;
}

int main()
{
	int  n, cases = 1;
	char buf[1001]; 
	while (~scanf("%d",&n) && n != -1) {
		scanf("%s",buf);
		int den = 1, num = 0;
		for (int i = 2; buf[i]; ++ i) {
			den *= 10;
			num = num *10 + (buf[i]-'0')*1;
		}
		if (n) {
			int temp = 1;
			for (int i = 0; i < n; ++ i)
				temp = temp*10;
			num = num-num/temp;
			den = den-den/temp;
		}
		int red = gcd(num, den);
		printf("Case %d: %d/%d\n",cases ++,num/red,den/red);
	}
	
	return 0;
}


8.17 (Rational Numbers) Create a class called Rational for performing arithmetic with fractions. Write a program to test your class. Use integer variables to represent the private instance variables of the class the numerator and the denominator. Provide a constructor that enables an object of this class to be initialized when it is declared. The constructor should store the fraction in reduced form. The fraction 2/4 is equivalent to 1/2 and would be stored in the object as 1 in the numerator and 2 in the denominator. Provide a no-argument constructor with default values in case no initializers are provided. Provide public methods that perform each of the following operations: a. Add two Rational numbers: The result of the addition should be stored in reduced form. b. Subtract two Rational numbers: The result of the subtraction should be stored in reduced form. c. Multiply two Rational numbers: The result of the multiplication should be stored in reduced form. d. Divide two Rational numbers: The result of the division should be stored in reduced form. e. Print Rational numbers in the form a/b, where a is the numerator and b is the denominator. f. Print Rational numbers in floating-point format. (Consider providing formatting capabilities that enable the user of the class to specify the number of digits of precision to the right of the decimal point.) – 提示: – 有理数是有分子、分母以形式a/b表示的数,其中a是分子,b是分母。例如,1/3,3/4,10/4。 – 有理数的分母不能为0,分子却可以为0。每个整数a等价于有理数a/1。有理数用于分数的精确计算中。例如1/3=0.0000…,它不能使用数据类型double或float的浮点格式精确表示出来,为了得到准确结果,必须使用有理数。 – Java提供了整数和浮点数的数据类型,但是没有提供有理数的类型。 – 由于有理数与整数、浮点数有许多共同特征,并且Number类是数字包装的根类,因此,把有理数类Rational定义为Number类的一个子类是比较合适的。由于有理数是可比较的,那么Rational类也应该实现Comparable接口。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值