题目:从1~n去若干个数字,使得他们的最小公倍数不小于M的有多少种。
分析:dp,数论,搜索。其实就是一个背包类似物。(貌似离散化dp写起来很简洁)
由于每个素数因子的个数有限(不超过20个)直接打表(dfs)计算出所有的最小公倍数;
然后DP更行最小公倍数即可;
这个题目要做一些优化(囧,TLE一次):
首先,二分查找,找到要更新的公倍数对应的位置;再次,就是把结果打表,然后每次求和即可。
说明:在比赛进行了2:30小时之后,我们终于A掉了第一道题,随即我终于找到了这个题的bug并将它A了;
原来是二分的上界 写成了36863.。。囧少写了一个WA半天。(2011-09-19 01:02)。
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
long long Lcm[ 42 ];
long long Pri[ 12 ] = {2,3,5,7,11,13,17,19,23,29,31,37};
long long Num[ 12 ] = {5,3,2,1,1,1,1,1,1,1,1,1};
long long Sav[ 36880 ];
long long Count = 0;
long long F[ 42 ][ 36880 ];
long long gcd( long long a, long long b )
{
return a%b?gcd( b, a%b ):b;
}
long long lcm( long long a, long long b )
{
return a/gcd( a, b )*b;
}
void dfs( int s, long long v )
{
if ( s == 12 ) Sav[ Count ++ ] = v;
else
for ( int i = 0 ; i <= Num[ s ] ; ++ i ) {
long long save = 1LL;
for ( int j = 0 ; j < i ; ++ j )
save *= Pri[ s ];
dfs( s+1, v*save );
}
}
int cmp( const void* a, const void* b )
{
long long *p = (long long *)a;
long long *q = (long long *)b;
if ( *p < *q ) return -1;
else return 1;
}
int search( long long V )
{
int m,l = 1,h = 36864;
while ( l < h ) {
m = (l+h+1)>>1;
if ( Sav[ m ] > V )
h = m-1;
else l = m;
}
return h;
}
int main()
{
Lcm[ 1 ] = 1;
for ( int i = 2 ; i <= 40 ; ++ i )
Lcm[ i ] = lcm( Lcm[ i-1 ], i );
Count = 0LL;
dfs( 0, 1LL );
qsort( Sav, Count+1, sizeof( long long ), cmp );
for ( int i = 1 ; i <= 40 ; ++ i )
for ( int j = 0 ; j <= Count ; ++ j )
F[ i ][ j ] = 0LL;
for ( int i = 1 ; i <= 40 ; ++ i ) {
for ( int j = 1 ; j <= Count ; ++ j )
F[ i ][ j ] = F[ i-1 ][ j ];
for ( int j = 1 ; j <= Count ; ++ j )
F[ i ][ search( lcm( Sav[ j ], i ) ) ] += F[ i-1 ][ j ];
F[ i ][ i ] += 1LL;
}
long long T,N,M;
while ( ~scanf("%I64d",&T) )
for ( int t = 1 ; t <= T ; ++ t ) {
scanf("%I64d%I64d",&N,&M);
int V = search( Lcm[ N ] );
long long sum = 0LL;
for ( int i = 1 ; i <= V ; ++ i )
if ( Sav[ i ] >= M )
sum += F[ N ][ i ];
printf("Case #%d: %I64d\n",t,sum);
}
return 0;
}