第一天上午:锂离子电池与机器学习基础
锂离子电池与机器学习背景:了解锂离子电池的基本原理、发展历程、应用领域以及当前面临的挑战;介绍机器学习的定义、发展历程、主要应用领域以及与锂离子电池研究的结合点,探讨机器学习如何助力锂离子电池性能提升和新材料研发。
Python基础语法、函数、模块和包、面向对象编程
机器学习库介绍:Numpy、Pandas、Matpliotlib、Seaborn、Scikit-learn
第一天下午:监督学习与非监督学习入门
监督学习与非监督学习
K-近邻、支持向量机、决策树、线性回归、逻辑回归
实战一:使用机器学习预测锂离子电池性能:特征工程描述包括电池的充放电循环数据、温度、电流、电压、电池的制造参数、材料特性等,选择不同的机器学习模型,例如决策树、随机森林、支持向量机,最后进行性能评估。

第二天上午:聚类分析与集成学习
K-均值聚类、层次聚类、PCA、t-SNE
集成学习:随机森林、Boosting
交叉验证、性能指标、模型评估与选择、网格搜索
实战二: 特征选择与聚类算法选择:根据锂离子电池的性能特征(如容量、能量密度、内阻、循环稳定性等),选择合适的聚类算法(如K-均值聚类、层次聚类等),通过特征工程对数据进行预处理,将数据转换为适合聚类分析的格式。
聚类结果分析与降维验证:对聚类结果进行分析,观察不同聚类类别中电池的性能特点和分布规律,通过降维技术(如PCA、t-SNE)对聚类结果进行可视化验证,判断聚类结果的有效性和合理性,为锂离子电池的性能分类和优化提供依据。

最低0.47元/天 解锁文章
1748

被折叠的 条评论
为什么被折叠?



