题目链接:https://ac.nowcoder.com/acm/contest/888/E
题意:n个点,m条边,每条边有一个通行范围:[l , r],问有多少数可以从1到n
题解:先把可行的区间离散化,然后线段树维护下区间,老样子右区间+1进行维护,把所有边可行的区间加入到线段树中,然后线段树从根节点不断向下进行操作,每次按秩合并优化并查集,记住不能路径压缩,因为还得回溯,每操作一个区间,就查询下1和n是否在一个整体,在的话就加上这个区间的贡献,接着返回,没有的话就继续向下dfs
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
struct node {
int l, r;
vector<int> v;
}tree[N * 2 * 4];
int n, m;
int f[N], son[N];
int X[N], Y[N], L[N], R[N];
int b[N << 1], len;
void init() {
for(int i = 0; i <= n; i++) {
f[i] = i;
son[i] = 1;
}
}
void build(int l, int r, int cur) {
tree[cur].l = l;
tree[cur].r = r;
if(l == r) return;
int mid = (r + l) >> 1;
build(l, mid, cur << 1);
build(mid + 1, r, cur << 1 | 1);
}
void update(int pl, int pr, int cur, int x) {
if(pl <= tree[cur].l && tree[cur].r <= pr) {
tree[cur].v.push_back(x);
return;
}
if(pl <= tree[cur << 1].r) update(pl, pr, cur << 1 , x);
if(pr >= tree[cur << 1 | 1].l) update(pl, pr, cur << 1 | 1, x);
}
int fath(int x) {
return x == f[x] ? x : fath(f[x]);
}
int ans;
void dfs(int l, int r, int cur) {
vector<int> tmp;
int x, y, pos;
for(int i = 0; i < tree[cur].v.size(); i++) {
pos = tree[cur].v[i];
x = fath(X[pos]);
y = fath(Y[pos]);
if(x == y) continue;
if(son[x] < son[y]) swap(x, y);
f[y] = x;
son[x] += son[y];
tmp.push_back(y);
}
x = fath(1);
y = fath(n);
if(x == y) {
ans += b[r + 1] - b[l];
} else if(l < r) {
int mid = (r + l ) >> 1;
dfs(l, mid, cur << 1);
dfs(mid + 1, r, cur << 1 | 1);
}
for(int i = tmp.size() - 1; i >= 0; i--) {
x = tmp[i], y = f[x];
f[x] = x;
son[y] -= son[x];
}
}
int main() {
int posl, posr;
scanf("%d %d", &n, &m);
init();
for(int i = 1; i <= m; i++) scanf("%d %d %d %d", &X[i], &Y[i], &L[i], &R[i]), b[++len] = L[i], b[++len] = R[i] + 1;
sort(b + 1, b + 1 + len);
len = unique(b + 1, b + 1 + len) - (b + 1);
build(1, len - 1, 1);
for(int i = 1; i <= m; i++) {
posl = lower_bound(b + 1, b + 1 + len, L[i]) - b;
posr = lower_bound(b + 1, b + 1 + len, R[i] + 1) - b;
update(posl, posr - 1, 1, i);
}
dfs(1, len - 1, 1);
printf("%d\n", ans);
return 0;
}