内容来自:http://scikit-learn.org/stable/index.html
- 1. Supervised learning
- 1.1. Generalized Linear Models
- 1.2. Linear and quadratic discriminant analysis
- 1.3. Kernel ridge regression
- 1.4. Support Vector Machines
- 1.5. Stochastic Gradient Descent
- 1.6. Nearest Neighbors
- 1.7. Gaussian Processes
- 1.8. Cross decomposition
- 1.9. Naive Bayes
- 1.10. Decision Trees
- 1.11. Ensemble methods
- 1.12. Multiclass and multilabel algorithms
- 1.13. Feature selection
- 1.14. Semi-Supervised
- 1.15. Isotonic regression
- 1.16. Probability calibration
- 2. Unsupervised learning
- 3. Model selection and evaluation
- 4. Dataset transformations
- 5. Dataset loading utilities
- 5.1. General dataset API
- 5.2. Toy datasets
- 5.3. Sample images
- 5.4. Sample generators
- 5.5. Datasets in svmlight / libsvm format
- 5.6. The Olivetti faces dataset
- 5.7. The 20 newsgroups text dataset
- 5.8. Downloading datasets from the mldata.org repository
- 5.9. The Labeled Faces in the Wild face recognition dataset
- 5.10. Forest covertypes
- 6. Strategies to scale computationally: bigger data
- 7. Computational Performance

本文概述了机器学习领域的核心算法与技术,包括监督学习、无监督学习、半监督学习、强化学习等,以及数据科学中常用的数据处理、模型评估、数据加载等工具与方法。同时覆盖了从基础到进阶的各类技术细节,旨在为读者提供全面的技术视野。
1271

被折叠的 条评论
为什么被折叠?



