Linux下Hadoop2.6的安装

linux:安装流程:

1、安装JDK,要求是jdk1.6及其以上的版本:

  1. 以jdk-8u40-linux-x64.gz为例,在你的java下载目录下

sudo tar -zxvf jdk-8u40-linux-x64.gz
sudo mv hadoop-2.6.0 /usr/local/jdk1.8.0_40  

然后

sudo gedit /etc/profile 

在最后面添加

export JAVA_HOME=/usr/local/jdk1.8.0_40
export PATH=$PATH:$JAVA_HOME/bin
export    CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar

第一行代码目的是加环境变量,可以用JAVA_HOME代替/usr/local/jdk1.8.0_40这个地址,后面就可以少写一点。

第二行代码目的是,为了方便运行java程序,这样涉及到程序软件要调用java时,只需要用java -arg 就可以,而不用找java的路径。

第三行代码的目的是,当需要用到jar的包时,系统会自动从classpath的路径里寻找加载

然后

source /etc/profile

重新编译一遍profile就安装好了java。可输入

java -version

来测试

2、安装ssh

sudo apt-get install ssh
ssh-keygen -t rsa 
Generating public/private rsa key pair.
Enter file in which to save the key (/home/hadoop/.ssh/id_rsa):[回车]
Enter passphrase (empty for no passphrase):[回车]
Enter same passphrase again:[回车]
Your identification has been saved in /home/test/.ssh/id_rsa.
Your public key has been saved in /home/test/.ssh/id_rsa.pub.
The key fingerprint is:
e4:37:20:54:19:26:d0:39:34:b3:79:cb:00:6b:c9:e5 test@master
The key's randomart image is:
+--[ RSA 2048]----+
|    o+Bo+o       |
|   . B+B.        |
|    = E.+        |
|   .   B o       |
|        S o      |
|         . .     |
|                 |
|                 |
|                 |
+-----------------+
cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
chmod 600 ~/.ssh/authorized_keys

安装ssh的主要目的是因为登陆远程主机会用ssh协议。

第一行代码是自己创建了一对密钥,分别为id_dsa和id_dsa.pub。存放公钥的文件名与私钥类是,但是以“.pub”作为后缀,例如~/.ssh/id_dsa.pub。

第二行代码是把公钥传递给自己的公钥目录。

3、配置hadoop2.6

sudo tar -zxvf hadoop-2.6.0.tar.gz
sudo mv hadoop-2.6.0 /usr/local/hadoop
sudo chmod -R 777 /usr/local/hadoop

然后

sudo gedit /etc/profile

在后面加入

export HADOOP_HOME=/usr/local/hadoop

export PATH=$PATH:$HADOOP_HOME/bin

export PATH=$PATH:$HADOOP_HOME/sbin
4、修改Hadoop配置文件

1)、修改hadoop=env.sh

sudo gedit /usr/local/hadoop/etc/hadoop/hadoop-env.sh

将JAVA_HOME的值改为/usr/local/jdk1.8.0_40

2)、core-site.xml(Hadoop Core的配置项,例如HDFS和MapReduce常用的I/O设置等)

<configuration>
  <property>
    <name>hadoop.tmp.dir</name>
    <value>/usr/local/hadoop/tmp</value>
    <description>Abase for other temporary directories.</description>
  </property>
  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://localhost:9000</value>
  </property>
</configuration>
3)、mapred-site.xml(MapReduce守护进程的配置项,包括jobtracker和tasktracker(每行一个))

<configuration>
 <property>   
      <name>mapred.job.tracker</name>  
      <value>localhost:9001</value>   
     </property>   
</configuration>
4)、yarn-site.xml

<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
5)、hdfs-site.xml(Hadoop守护进程的配置项,包括namenode、辅助namenode(即secondarynamenode)和datanode等)

<configuration>
<property>
    <name>dfs.replication</name>
    <value>1</value>
  </property>
  <property>
    <name>dfs.namenode.name.dir</name>
    <value>file:/usr/local/hadoop/dfs/name</value>
  </property>
  <property>
    <name>dfs.datanode.data.dir</name>
    <value>file:/usr/local/hadoop/dfs/data</value>
  </property>
  <property>				 //这个属性节点是为了防止后面eclopse存在拒绝读写设置的
      <name>dfs.permissions</name>
      <value>false</value>
   </property>
 </configuration>
5、添加主节点和从节点

sudo gedit /usr/local/hadoop/etc/hadoop/masters 添加:localhost

sudo gedit /usr/local/hadoop/etc/hadoop/slaves 添加:localhost

6、创建好临时目录和datanode与namenode的目录

cd /usr/local/hadoop
mkdir tmp dfs dfs/name dfs/data
7、 格式化namenode的namespace和dataspace

bin/hdfs namenode -format
bin/hdfs namenode -format成功的话,最后的提示如下,Exitting with status 0 表示成功,Exitting with status 1: 则是出错。

8、启动hadoop集群

sbin/start-dfs.sh
sbin/start-yarn.sh
尽量不要用start-all.sh,以为hadoop作者发现这个脚本可能有点问题。

9、访问hadoop的web页面,验证hadoop集群是否成功搭建完成

http://ubuntu:50030 可以查看JobTracker的运行状态: 
http://ubuntu:50070 可以查看NameNode及整个分布式文件系统的状态等: 

http://localhost:8088 查看all application的信息

或者使用jps命令看相应进程

10、测试

然后输入以下代码可以来测试

bin/hdfs dfs -mkdir /user
bin/hdfs dfs -mkdir /user/<username>
bin/hdfs dfs -put etc/hadoop input
bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar grep input output 'dfs[a-z.]+'
bin/hdfs dfs -cat output/*

正常情况下会有wordcount的输出结果

11、配置eclipse

  • 把hadoop-eclipse-plugin-2.6.0.jar复制到eclipse插件目录,重启eclipse

  • 配置 hadoop 安装目录

window ->preference -> hadoop Map/Reduce -> Hadoop installation directory

  • 配置Map/Reduce 视图

window ->Open Perspective -> other->Map/Reduce -> 点击“OK”

windows → show view → other->Map/Reduce Locations-> 点击“OK”

  • 控制台会多出一个“Map/Reduce Locations”的Tab页

在“Map/Reduce Locations” Tab页 点击图标<大象+>或者在空白的地方右键,选择“New Hadoop location…”,弹出对话框“New hadoop location…”,配置如下内容:将ha1改为自己的hadoop用户


注意:MR Master和DFS Master配置必须和mapred-site.xml和core-site.xml等配置文件一致。

打开Project Explorer,查看HDFS文件系统。

  • 新建Map/Reduce任务

File->New->project->Map/Reduce Project->Next

编写WordCount类:记得先把服务都起来

/**
 * 
 */
package com.zongtui;

/**
 * ClassName: WordCount <br/>
 * Function: TODO ADD FUNCTION. <br/>
 * date: Jun 28, 2015 5:34:18 AM <br/>
 *
 * @author zhangfeng
 * @version 
 * @since JDK 1.7
 */

import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;

public class WordCount {
    public static class Map extends MapReduceBase implements
            Mapper<LongWritable, Text, Text, IntWritable> {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(LongWritable key, Text value,
                OutputCollector<Text, IntWritable> output, Reporter reporter)
                throws IOException {
            String line = value.toString();
            StringTokenizer tokenizer = new StringTokenizer(line);
            while (tokenizer.hasMoreTokens()) {
                word.set(tokenizer.nextToken());
                output.collect(word, one);
            }
        }
    }

    public static class Reduce extends MapReduceBase implements
            Reducer<Text, IntWritable, Text, IntWritable> {
        public void reduce(Text key, Iterator<IntWritable> values,
                OutputCollector<Text, IntWritable> output, Reporter reporter)
                throws IOException {
            int sum = 0;
            while (values.hasNext()) {
                sum += values.next().get();
            }
            output.collect(key, new IntWritable(sum));
        }
    }

    public static void main(String[] args) throws Exception {
        JobConf conf = new JobConf(WordCount.class);
        conf.setJobName("wordcount");

        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);

        conf.setMapperClass(Map.class);
        conf.setReducerClass(Reduce.class);

        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(TextOutputFormat.class);

        FileInputFormat.setInputPaths(conf, new Path(args[0]));
        FileOutputFormat.setOutputPath(conf, new Path(args[1]));

        JobClient.runJob(conf);
    }
}
user/admin123/input/hadoop是你上传在hdfs的文件夹(自己创建),里面放要处理的文件。ouput1放输出结果


将程序放在hadoop集群上运行:右键-->Runas -->Run on Hadoop,最终的输出结果会在HDFS相应的文件夹下显示。至此,ubuntu下hadoop-2.6.0 eclipse插件配置完成。

HDFS启动时如何使用SSH协议? 

三种启动方式的关系 



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值