引用 java中的读写锁实现

本文介绍了一种基于Java实现的读写锁机制,通过自定义ReadWriteLock类来确保多线程环境下对同一对象的安全读写操作。文章详细阐述了读写锁的设计原理,并通过实例演示了如何使用该机制避免“读-写”和“写-写”冲突。
 

rttmmr java中的读写锁实现

        多线程读写同一个对象的数据是很普遍的,通常,要避免读写冲突,必须保证任何时候仅有一个线程在写入,有线程正在读取的时候,写入操作就必须等待。简单说,就是要避免“写-写”冲突和“读-写”冲突。但是同时读是允许的,因为“读-读”不冲突,而且很安全。

要实现以上的ReadWriteLock,简单的使用synchronized就不行,我们必须自己设计一个ReadWriteLock类,在读之前,必须先获得“读锁”,写之前,必须先获得“写锁”。举例说明:

DataHandler对象保存了一个可读写的char[]数组:

package com.crackj2ee.thread;

public class DataHandler {
    // store data:
    private char[] buffer = "AAAAAAAAAA".toCharArray();

    private char[] doRead() {
        char[] ret = new char[buffer.length];
        for(int i=0; i<buffer.length; i++) {
            ret[i] = buffer[i];
            sleep(3);
        }
        return ret;
    }

    private void doWrite(char[] data) {
        if(data!=null) {
            buffer = new char[data.length];
            for(int i=0; i<buffer.length; i++) {
                buffer[i] = data[i];
                sleep(10);
            }
        }
    }

    private void sleep(int ms) {
        try {
            Thread.sleep(ms);
        }
        catch(InterruptedException ie) {}
    }
}

doRead()和doWrite()方法是非线程安全的读写方法。为了演示,加入了sleep(),并设置读的速度大约是写的3倍,这符合通常的情况。

为了让多线程能安全读写,我们设计了一个ReadWriteLock:

package com.crackj2ee.thread;
public class ReadWriteLock {
    private int readingThreads = 0;
    private int writingThreads = 0;
    private int waitingThreads = 0; // waiting for write
    private boolean preferWrite = true;

    public synchronized void readLock() throws InterruptedException {
        while(writingThreads>0 || (preferWrite && waitingThreads>0))
            this.wait();
        readingThreads++;
    }

    public synchronized void readUnlock() {
        readingThreads--;
        preferWrite = true;
        notifyAll();
    }

    public synchronized void writeLock() throws InterruptedException {
        waitingThreads++;
        try {
            while(readingThreads>0 || writingThreads>0)
                this.wait();
        }
        finally {
            waitingThreads--;
        }
        writingThreads++;
    }

    public synchronized void writeUnlock() {
        writingThreads--;
        preferWrite = false;
        notifyAll();
    }
}

readLock()用于获得读锁,readUnlock()释放读锁,writeLock()和writeUnlock()一样。由于锁用完必须释放,因此,必须保证lock和unlock匹配。我们修改DataHandler,加入ReadWriteLock:

package com.crackj2ee.thread;
public class DataHandler {
    // store data:
    private char[] buffer = "AAAAAAAAAA".toCharArray();
    // lock:
    private ReadWriteLock lock = new ReadWriteLock();

    public char[] read(String name) throws InterruptedException {
        System.out.println(name + " waiting for read...");
        lock.readLock();
        try {
            char[] data = doRead();
            System.out.println(name + " reads data: " + new String(data));
            return data;
        }
        finally {
            lock.readUnlock();
        }
    }

    public void write(String name, char[] data) throws InterruptedException {
        System.out.println(name + " waiting for write...");
        lock.writeLock();
        try {
            System.out.println(name + " wrote data: " + new String(data));
            doWrite(data);
        }
        finally {
            lock.writeUnlock();
        }
    }

    private char[] doRead() {
        char[] ret = new char[buffer.length];
        for(int i=0; i<buffer.length; i++) {
            ret[i] = buffer[i];
            sleep(3);
        }
        return ret;
    }
    private void doWrite(char[] data) {
        if(data!=null) {
            buffer = new char[data.length];
            for(int i=0; i<buffer.length; i++) {
                buffer[i] = data[i];
                sleep(10);
            }
        }
    }
    private void sleep(int ms) {
        try {
            Thread.sleep(ms);
        }
        catch(InterruptedException ie) {}
    }
}

public方法read()和write()完全封装了底层的ReadWriteLock,因此,多线程可以安全地调用这两个方法:

// ReadingThread不断读取数据:
package com.crackj2ee.thread;
public class ReadingThread extends Thread {
    private DataHandler handler;
    public ReadingThread(DataHandler handler) {
        this.handler = handler;
    }
    public void run() {
        for(;;) {
            try {
                char[] data = handler.read(getName());
                Thread.sleep((long)(Math.random()*1000+100));
            }
            catch(InterruptedException ie) {
                break;
            }
        }
    }
}

// WritingThread不断写入数据,每次写入的都是10个相同的字符:
package com.crackj2ee.thread;
public class WritingThread extends Thread {
    private DataHandler handler;
    public WritingThread(DataHandler handler) {
        this.handler = handler;
    }
    public void run() {
        char[] data = new char[10];
        for(;;) {
            try {
                fill(data);
                handler.write(getName(), data);
                Thread.sleep((long)(Math.random()*1000+100));
            }
            catch(InterruptedException ie) {
                break;
            }
        }
    }
    // 产生一个A-Z随机字符,填入char[10]:
    private void fill(char[] data) {
        char c = (char)(Math.random()*26+'A');
        for(int i=0; i<data.length; i++)
            data[i] = c;
    }
}

最后Main负责启动这些线程:

package com.crackj2ee.thread;
public class Main {
    public static void main(String[] args) {
        DataHandler handler = new DataHandler();
        Thread[] ts = new Thread[] {
                new ReadingThread(handler),
                new ReadingThread(handler),
                new ReadingThread(handler),
                new ReadingThread(handler),
                new ReadingThread(handler),
                new WritingThread(handler),
                new WritingThread(handler)
        };
        for(int i=0; i<ts.length; i++) {
            ts[i].start();
        }
    }
}

我们启动了5个读线程和2个写线程,运行结果如下:

Thread-0 waiting for read...
Thread-1 waiting for read...
Thread-2 waiting for read...
Thread-3 waiting for read...
Thread-4 waiting for read...
Thread-5 waiting for write...
Thread-6 waiting for write...
Thread-4 reads data: AAAAAAAAAA
Thread-3 reads data: AAAAAAAAAA
Thread-2 reads data: AAAAAAAAAA
Thread-1 reads data: AAAAAAAAAA
Thread-0 reads data: AAAAAAAAAA
Thread-5 wrote data: EEEEEEEEEE
Thread-6 wrote data: MMMMMMMMMM
Thread-1 waiting for read...
Thread-4 waiting for read...
Thread-1 reads data: MMMMMMMMMM
Thread-4 reads data: MMMMMMMMMM
Thread-2 waiting for read...
Thread-2 reads data: MMMMMMMMMM
Thread-0 waiting for read...
Thread-0 reads data: MMMMMMMMMM
Thread-4 waiting for read...
Thread-4 reads data: MMMMMMMMMM
Thread-2 waiting for read...
Thread-5 waiting for write...
Thread-2 reads data: MMMMMMMMMM
Thread-5 wrote data: GGGGGGGGGG
Thread-6 waiting for write...
Thread-6 wrote data: AAAAAAAAAA
Thread-3 waiting for read...
Thread-3 reads data: AAAAAAAAAA
......

可以看到,每次读/写都是完整的原子操作,因为我们每次写入的都是10个相同字符。并且,每次读出的都是最近一次写入的内容。

如果去掉ReadWriteLock:

package com.crackj2ee.thread;
public class DataHandler {

    // store data:
    private char[] buffer = "AAAAAAAAAA".toCharArray();

    public char[] read(String name) throws InterruptedException {
        char[] data = doRead();
        System.out.println(name + " reads data: " + new String(data));
        return data;
    }
    public void write(String name, char[] data) throws InterruptedException {
        System.out.println(name + " wrote data: " + new String(data));
        doWrite(data);
    }

    private char[] doRead() {
        char[] ret = new char[10];
        for(int i=0; i<10; i++) {
            ret[i] = buffer[i];
            sleep(3);
        }
        return ret;
    }
    private void doWrite(char[] data) {
        for(int i=0; i<10; i++) {
            buffer[i] = data[i];
            sleep(10);
        }
    }
    private void sleep(int ms) {
        try {
            Thread.sleep(ms);
        }
        catch(InterruptedException ie) {}
    }
}

运行结果如下:

Thread-5 wrote data: AAAAAAAAAA
Thread-6 wrote data: MMMMMMMMMM
Thread-0 reads data: AAAAAAAAAA
Thread-1 reads data: AAAAAAAAAA
Thread-2 reads data: AAAAAAAAAA
Thread-3 reads data: AAAAAAAAAA
Thread-4 reads data: AAAAAAAAAA
Thread-2 reads data: MAAAAAAAAA
Thread-3 reads data: MAAAAAAAAA
Thread-5 wrote data: CCCCCCCCCC
Thread-1 reads data: MAAAAAAAAA
Thread-0 reads data: MAAAAAAAAA
Thread-4 reads data: MAAAAAAAAA
Thread-6 wrote data: EEEEEEEEEE
Thread-3 reads data: EEEEECCCCC
Thread-4 reads data: EEEEEEEEEC
Thread-1 reads data: EEEEEEEEEE

可以看到在Thread-6写入EEEEEEEEEE的过程中,3个线程读取的内容是不同的。

思考

java的synchronized提供了最底层的物理锁,要在synchronized的基础上,实现自己的逻辑锁,就必须仔细设计ReadWriteLock。

Q: lock.readLock()为什么不放入try{ } 内?
A: 因为readLock()会抛出InterruptedException,导致readingThreads++不执行,而readUnlock()在finally{ } 中,导致readingThreads--执行,从而使readingThread状态出错。writeLock()也是类似的。

Q: preferWrite有用吗?
A: 如果去掉preferWrite,线程安全不受影响。但是,如果读取线程很多,上一个线程还没有读取完,下一个线程又开始读了,就导致写入线程长时间无法获得writeLock;如果写入线程等待的很多,一个接一个写,也会导致读取线程长时间无法获得readLock。preferWrite的作用是让读/写交替执行,避免由于读线程繁忙导致写无法进行和由于写线程繁忙导致读无法进行。

Q: notifyAll()换成notify()行不行?
A: 不可以。由于preferWrite的存在,如果一个线程刚读取完毕,此时preferWrite=true,再notify(),若恰好唤醒的是一个读线程,则while(writingThreads>0 || (preferWrite && waitingThreads>0))可能为true导致该读线程继续等待,而等待写入的线程也处于wait()中,结果所有线程都处于wait()状态,谁也无法唤醒谁。因此,notifyAll()比notify()要来得安全。程序验证notify()带来的死锁:

Thread-0 waiting for read...
Thread-1 waiting for read...
Thread-2 waiting for read...
Thread-3 waiting for read...
Thread-4 waiting for read...
Thread-5 waiting for write...
Thread-6 waiting for write...
Thread-0 reads data: AAAAAAAAAA
Thread-4 reads data: AAAAAAAAAA
Thread-3 reads data: AAAAAAAAAA
Thread-2 reads data: AAAAAAAAAA
Thread-1 reads data: AAAAAAAAAA
Thread-5 wrote data: CCCCCCCCCC
Thread-2 waiting for read...
Thread-1 waiting for read...
Thread-3 waiting for read...
Thread-0 waiting for read...
Thread-4 waiting for read...
Thread-6 wrote data: LLLLLLLLLL
Thread-5 waiting for write...
Thread-6 waiting for write...
Thread-2 reads data: LLLLLLLLLL
Thread-2 waiting for read...
(运行到此不动了)

注意到这种死锁是由于所有线程都在等待别的线程唤醒自己,结果都无法醒过来。这和两个线程希望获得对方已有的锁造成死锁不同。因此多线程设计的难度远远高于单线程应用。

 
<think>我们正在讨论Java读写锁(ReadWriteLock)机制。根据用户的问题,我们需要解释其实现原理和使用场景。同时,用户提供了几个引用,我们可以从中提取相关信息。 引用[1]介绍了读写锁的基本概念:读写锁分为读锁和写锁,读锁是共享的,允许多个线程同时获取;写锁是独占的,不允许多个线程同时获取,并且写锁与读锁是互斥的。 引用[2]说明了在Java 5之前,使用等待通知机制来实现类似功能,但使用读写锁可以简化编程。 引用[3]是一篇关于Golang和Java读写锁对比的文章摘要,但用户的问题集中在Java上,我们可以忽略Golang部分。 引用[4]提到了锁降级,即持有写锁的线程可以获取读锁然后释放写锁,这样就从写锁降级为读锁,这有助于提高并发性能。 引用[5]展示了一个使用ReentrantReadWriteLock的示例,其中自定义了一个线程安全的ArrayList。 根据这些引用和用户的问题,我们将组织以下内容: 1. 读写锁的概念 2. 读写锁实现原理(重点在Java的ReentrantReadWriteLock) 3. 读写锁的使用场景 4. 锁降级的概念和实现方式 5. 示例代码 由于用户要求尽可能参考上一次的问题和回答,但上一次我们讨论的是自旋锁,而这次是读写锁,两者不同,所以我们将专注于读写锁实现原理部分,我们将深入ReentrantReadWriteLock的内部机制,包括状态分割、锁重入、公平性等。 使用场景部分,我们将对比读写锁和普通互斥锁,以及读写锁的适用场景。 最后,我们将提供一个示例代码,并生成相关问题。 注意:用户要求使用LaTeX格式的数学表达式,但读写锁原理中数学表达式较少,如果有必要,我们可以用状态变量等说明。 开始回答:</think>### Java 读写锁机制详解 #### 一、核心概念 读写锁(`ReadWriteLock`)是一种**分离锁机制**,将访问控制分为两类: 1. **读锁(共享锁)**:允许多个线程同时获取,用于只读操作[^1] ```java ReentrantReadWriteLock.ReadLock readLock = lock.readLock(); ``` 2. **写锁(排他锁)**:同一时间仅允许一个线程持有,用于写操作[^1] ```java ReentrantReadWriteLock.WriteLock writeLock = lock.writeLock(); ``` 锁互斥关系矩阵: | 当前持有锁 | 请求读锁 | 请求写锁 | |------------|----------|----------| | **无锁** | ✓ | ✓ | | **读锁** | ✓ | ✗ | | **写锁** | ✗ | ✗ | #### 二、实现原理(以`ReentrantReadWriteLock`为例) ##### 1. 状态分割 使用单个`int`变量同时维护读写状态: - **高16位**:读锁计数(最大支持$2^{16}-1=65535$个读线程) - **低16位**:写锁重入计数 ```java static final int SHARED_SHIFT = 16; static final int SHARED_UNIT = (1 << SHARED_SHIFT); // 0x00010000 static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1; // 0x0000FFFF ``` ##### 2. 锁获取逻辑 **写锁获取**(简化伪代码): ```java protected boolean tryAcquire(int acquires) { if (getState() != 0) { // 存在读锁或写锁 if (getExclusiveOwnerThread() != currentThread) return false; // 非重入写锁请求失败 } compareAndSetState(0, acquires); // CAS更新状态 setExclusiveOwnerThread(currentThread); return true; } ``` **读锁获取**核心流程: ```mermaid graph TD A[请求读锁] --> B{写锁是否被占用?} B -->|是| C[阻塞当前线程] B -->|否| D{读锁计数 < 65535?} D -->|是| E[CAS增加读计数] D -->|否| F[抛出Error] E --> G[更新当前线程重入计数] ``` #### 三、关键特性 1. **锁降级** 写锁线程可获取读锁后释放写锁,保持数据一致性[^4]: ```java writeLock.lock(); try { // 修改数据 readLock.lock(); // 获取读锁(降级开始) } finally { writeLock.unlock(); // 释放写锁(仍持有读锁) } // 此时其他写锁仍被阻塞 readLock.unlock(); ``` 2. **公平性选择** - **公平模式**:按请求顺序分配锁 - **非公平模式**:允许读锁插队(默认,吞吐量更高) 3. **重入支持** - 读线程可重复获取读锁(需对应次数的`unlock()`) - 写线程可重入写锁,也可获取读锁(锁降级基础) #### 四、使用场景 | 场景 | 适用性 | 原因说明 | |---------------------------|--------|------------------------------| | 读多写少(如配置中心) | ★★★★★ | 读并行最大化[^5] | | 数据缓存更新 | ★★★★☆ | 写时阻塞读,保证数据一致性 | | 实时统计系统 | ★★★★☆ | 读锁允许并发统计 | | 写操作频繁(>30%) | ★☆☆☆☆ | 读写锁开销反超`synchronized`| | 需要严格写顺序的场景 | ★★☆☆☆ | 公平模式有性能损耗 | #### 五、最佳实践示例 ```java // 线程安全的ArrayList实现[^5] public class SafeArrayList<E> { private final List<E> list = new ArrayList<>(); private final ReentrantReadWriteLock lock = new ReentrantReadWriteLock(); public void add(E element) { lock.writeLock().lock(); // 写锁 try { list.add(element); } finally { lock.writeLock().unlock(); } } public E get(int index) { lock.readLock().lock(); // 读锁 try { return list.get(index); } finally { lock.readLock().unlock(); } } } ``` #### 六、性能优化建议 1. **控制临界区时长** 写操作应控制在$<1ms$,避免长时间阻塞读线程 ```java writeLock.lock(); try { // 只包含必要写操作 doCriticalWrite(); } finally { writeLock.unlock(); } ``` 2. **避免锁升级** Java不支持读锁升级为写锁,强行尝试会导致死锁: ```java readLock.lock(); try { // 此处尝试获取写锁将永久阻塞! writeLock.lock(); // ❌ 错误用法 } finally { readLock.unlock(); } ``` 3. **监控竞争情况** 通过`getQueueLength()`检测等待线程数: ```java if (lock.getWriteLock().getQueueLength() > 10) { // 触发写操作优化 } ``` > **选型原则**:当读操作占比 ≥ 70% 时,读写锁性能优势显著[^2]。在$N$读线程$M$写线程场景下,吞吐量提升比约为: > $$ > \text{加速比} = \frac{T_{\text{sync}}}{T_{\text{rwlock}}} \approx \frac{N \times T_{\text{read}} + M \times T_{\text{write}}}{T_{\text{write}} + \frac{N \times T_{\text{read}}}{\text{并发因子}}} > $$ ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值