import urllib
import numpy as np
from sklearn import datasets, linear_model
from math import sqrt
import matplotlib.pyplot as plot
#read data into iterable
target_url = "http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv"
data = urllib.request.urlopen(target_url)
xList = []
labels = []
names = []
firstLine = True
for line in data:
if firstLine:
names = str(line).strip().split(";")
firstLine = False
else:
row = str(line).strip("\\n'").split(';')
labels.append(row[-1])
row.pop()
floatRow = []
for num in row:
if "b'" in num:
num = num.replace("b'",'')
floatRow.append(float(num))
xList.append(floatRow)
nrows = len(xList)
ncols = len(xList[0])
xMeans = np.array(xList).mean(axis=0)
求解惩戒线性回归-LARS算法源码
最新推荐文章于 2024-11-28 03:14:05 发布