from numpy import *
def loadDataSet(filename):
numFeat = len(open(filename).readline().split('\t')) - 1
dataMat = []
labelMat = []
fr = open(filename)
for line in fr.readlines():
lineArr = []
curLine = line.strip().split('\t')
for i in range(numFeat):
lineArr.append(float(curLine[i]))
dataMat.append(lineArr)
labelMat.append(float(curLine[-1]))
return dataMat,labelMat
def standRegress(xArr,yArr):
xMat = mat(xArr)
yMat = mat(yArr).T
xTx = xMat.T * xMat
if linalg.det(xTx) == 0.0:
print('error')
return
ws = xTx.I * (xMat.T * yMat)
return ws
xArr,yArr = loadDataSet('ex0.txt')
ws = standRegress(xArr,yArr)
xMat = mat(xArr)
yMat = mat(yArr)
yHat = xMat * ws
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xMat[:,1].flatten().A[0],yMat.T[:,0].flatten().A[0]) #生成一个一维的数组,A[0]将mat变成array,其中0位索引
xCopy = xMat.copy()
xCopy.sort(0)
yHat = xCopy * ws
ax.plot(xCopy[:,1].flatten().A[0],yHat)
plt.show()
机器学习python线性回归(矩阵法求参)
最新推荐文章于 2024-08-21 10:57:28 发布