C语言程序里全局变量、局部变量、堆、栈的认识与使用

博客介绍了C语言在内存中的五个分配区域,包括栈区、堆区等,强调需及时销毁堆内存防泄漏。还进行了Ubuntu中的程序验证,展示代码及运行结果,最后利用串口通信代码在stm32上验证,通过keil5烧录查看返回数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C语言程序里全局变量、局部变量、堆、栈的认识与使用

C语言在内存中的分配

C语言在内存中一共分为五个区域,分别是栈区、堆区、全局/静态存储区、常量存储区、代码区。
注:C/C++不提供垃圾回收机制,因此需要对堆中的数据进行及时销毁,防止内存泄漏,使用free和delete销毁new和malloc申请的堆内存,而栈内存是动态释放。

栈区(stack): 程序运行时由编译器自动分配,存放函数的参数值,局部变量的值等

堆区(heap): 在内存开辟另一块存储区域。一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。

全局区(静态区)(static):编译器编译时即分配内存。全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。程序结束后由系统释放。

文字常量区 :常量字符串就是放在这里的。 程序结束后由系统释放。

程序代码区:存放函数体的二进制代码。

Ubuntu中的程序验证

1.代码源码如下:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
 
void before()
{
 
}
 
char g_buf[16];
char g_buf2[16];
char g_buf3[16];
char g_buf4[16];
char g_i_buf[]="123";
char g_i_buf2[]="123";
char g_i_buf3[]="123";
 
void after()
{
 
}
 
int main(int argc, char **argv)
{
        char l_buf[16];
        char l_buf2[16];
        char l_buf3[16];
        static char s_buf[16];
        static char s_buf2[16];
        static char s_buf3[16];
        char *p_buf;
        char *p_buf2;
        char *p_buf3;
 
        p_buf = (char *)malloc(sizeof(char) * 16);
        p_buf2 = (char *)malloc(sizeof(char) * 16);
        p_buf3 = (char *)malloc(sizeof(char) * 16);
 
        printf("g_buf: 0x%x\n", g_buf);
        printf("g_buf2: 0x%x\n", g_buf2);
        printf("g_buf3: 0x%x\n", g_buf3);
        printf("g_buf4: 0x%x\n", g_buf4);
 
        printf("g_i_buf: 0x%x\n", g_i_buf);
        printf("g_i_buf2: 0x%x\n", g_i_buf2);
        printf("g_i_buf3: 0x%x\n", g_i_buf3);
 
        printf("l_buf: 0x%x\n", l_buf);
        printf("l_buf2: 0x%x\n", l_buf2);
        printf("l_buf3: 0x%x\n", l_buf3);
 
        printf("s_buf: 0x%x\n", s_buf);
        printf("s_buf2: 0x%x\n", s_buf2);
        printf("s_buf3: 0x%x\n", s_buf3);
 
        printf("p_buf: 0x%x\n", p_buf);
        printf("p_buf2: 0x%x\n", p_buf2);
        printf("p_buf3: 0x%x\n", p_buf3);
 
        printf("before: 0x%x\n", before);
        printf("after: 0x%x\n", after);
        printf("main: 0x%x\n", main);
 
        if (argc > 1)
        {
                strcpy(l_buf, argv[1]);
        }
        return 0;
}

运行结果如下:
在这里插入图片描述
可以看到,从低地址到高地址,如图:
在这里插入图片描述
可以看出以上内存地址都符合。

stm32的验证

利用上篇博客串口通信的代码,并修改main函数

#include "stm32f10x.h"
#include "bsp_usart.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
 
void before()
{
 
}
 
char g_buf[16];
char g_buf2[16];
char g_buf3[16];
char g_buf4[16];
char g_i_buf[]="123";
char g_i_buf2[]="123";
char g_i_buf3[]="123";
 
void after()
{
 
}
 
int main(int argc, char **argv)
{
        char l_buf[16];
        char l_buf2[16];
        char l_buf3[16];
        static char s_buf[16];
        static char s_buf2[16];
        static char s_buf3[16];
        char *p_buf;
        char *p_buf2;
        char *p_buf3;
 
        p_buf = (char *)malloc(sizeof(char) * 16);
        p_buf2 = (char *)malloc(sizeof(char) * 16);
        p_buf3 = (char *)malloc(sizeof(char) * 16);
 
        printf("g_buf: 0x%x\n", g_buf);
        printf("g_buf2: 0x%x\n", g_buf2);
        printf("g_buf3: 0x%x\n", g_buf3);
        printf("g_buf4: 0x%x\n", g_buf4);
 
        printf("g_i_buf: 0x%x\n", g_i_buf);
        printf("g_i_buf2: 0x%x\n", g_i_buf2);
        printf("g_i_buf3: 0x%x\n", g_i_buf3);
 
        printf("l_buf: 0x%x\n", l_buf);
        printf("l_buf2: 0x%x\n", l_buf2);
        printf("l_buf3: 0x%x\n", l_buf3);
 
        printf("s_buf: 0x%x\n", s_buf);
        printf("s_buf2: 0x%x\n", s_buf2);
        printf("s_buf3: 0x%x\n", s_buf3);
 
        printf("p_buf: 0x%x\n", p_buf);
        printf("p_buf2: 0x%x\n", p_buf2);
        printf("p_buf3: 0x%x\n", p_buf3);
 
        printf("before: 0x%x\n", before);
        printf("after: 0x%x\n", after);
        printf("main: 0x%x\n", main);
 
        if (argc > 1)
        {
                strcpy(l_buf, argv[1]);
        }
        return 0;
}

通过keil5烧录进板子里。然后通过串口通信,查看返回的数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值