Hidden-Unit Conditional Random Fields

隐单元条件随机场(Hidden-Unit CRF)是一种用于结构化预测的强大模型,比标准线性CRF更强大。通过二进制随机隐单元来建模与分类相关的潜在数据结构,这些隐单元在给定数据和标签的情况下条件独立,从而使得推理过程中可以有效地进行边缘化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hidden-Unit Conditional Random Fields

 
 

Introduction

The hidden-unit conditional random field (CRF) is a model for structured prediction that is more powerful than standard linear CRFs. The additional modeling power of hidden-unit CRFs stems from its binary stochastic hidden units that model latent data structure that is relevant to classification. The hidden units are conditionally independent given the data and the labels, as a result of which they can be marginalized out efficiently during inference. The difference between hidden-unit CRFs and linear CRFs is illustrated in these factor graphs:






Figure 1: Linear CRF.









Figure 2: Hidden-unit CRF.


Hidden-unit conditional random fields are described in detail in the following paper:

  1.  L.J.P. van der Maaten, M. Welling, and L.K. Saul. Hidden-Unit Conditional Random Fields. In Proceedings of the International Conference on Artificial Intelligence & Statistics (AI-STATS), JMLR W&CP 15:479-488, 2011. [ PDF ]


NOTE: Please cite this paper if you use this code!



Related work

The online training algorithms for hidden-unit CRFs are closely related to conditional herding:

  1.  A. Gelfand, L.J.P. van der Maaten, Y. Chen, and M. Welling. On Herding and the Perceptron Cycling Theorem. In Advances of Neural Information Processing Systems (NIPS), volume 23, pages 694-702, 2010. [ PDF ]


The individual predictors in hidden-unit CRFs are so-called discriminative RBMs. Discriminative RBMs can be shown to be universal approximators of p(y|x) for discrete data:

  1.  L.J.P. van der Maaten. Discriminative Restricted Boltzmann Machines are Universal Approximators for Discrete Data. Technical Report EWI-PRB 2011-001, Delft University of Technology, The Netherlands, 2011. [ PDF ]



Legal

Code provided by Laurens van der Maaten, 2011. The author of this code do not take any responsibility for damage that is the result from bugs in the provided code. This code can be used for non-commercial purposes only. Please contact the author if you would like to use this code commercially.



Software

We provide Matlab code that implements the training and evaluation of hidden-unit CRFs, as well as code to reproduce the results of our experiments. The code implements four different training algorithms: (1) a batch learner that uses L-BFGS, (2) a stochastic gradient descent learner, (3) an online perceptron training algorithm, and (4) an online large-margin perceptron algorithm. The code can also be used to perform (conditional) herding in hidden-unit CRFs.


The following files are available for download:


  1.  Matlab code (.zip; 168 KB)


  1.  Readme.txt


  1.  OCR data set (.zip; 30.8 MB; data set courtesy of Ben Taskar)


  1.  FAQ data set (.zip; 127 KB; data set courtesy of Andrew McCallum)


  1.  CB513 data set (.zip; 2.2 MB)


  1.  Penn Treebank corpus (.zip; 36.0 MB)



Problems / Bugs / Questions?

Feel free to drop me a line.


来源:http://cseweb.ucsd.edu/~lvdmaaten/hucrf/Hidden-Unit_Conditional_Random_Fields.html

 
### 使用AI大模型实现手语到文字的转换 #### 架构概述 手语到文字的转换可以视为一个多模态的学习问题,其中输入是视频流或图像帧序列,而输出则是相应的自然语言文本。这一过程通常依赖于深度学习框架来捕捉视觉特征并映射至对应的词义表示。具体来说,通过构建一个端到端的大规模预训练模型,该模型能够理解手部动作、面部表情以及其他非言语线索,并将其转化为连贯的文字表达。 #### 模型设计 对于此类任务,一种常见的做法是采用编码器-解码器架构,在这种情况下,编码部分负责提取空间与时序上的特征向量;解码阶段则利用这些抽象表征生成目标语言句子。特别地: - **编码层**:使用卷积神经网络(CNNs)或者三维CNN(3D CNN)[^1] 来捕获静态图片内的局部模式以及连续帧间的变化趋势; - **时间建模模块**:引入循环单元如LSTM(Long Short-Term Memory),GRU(Gated Recurrent Unit), 或者更先进的Transformer结构,以便更好地处理长时间跨度的手势运动轨迹[^2]; - **标签预测组件**:最后连接一层全连接层加上softmax激活函数用于分类每一个时刻可能对应的具体字符/单词,也可以考虑加入CRF(Conditional Random Fields)以优化整个序列的一致性和合理性. #### 训练策略 考虑到数据集往往存在类别不平衡现象(即某些常用词汇频繁出现),建议采取加权交叉熵损失函数或者其他专门针对多类别的度量标准来进行监督式学习。此外,还可以借助迁移学习的思想,先在一个大规模通用领域上微调基础参数,再逐步迁移到特定应用场景下继续迭代更新权重矩阵直至收敛稳定为止。 ```python import torch.nn as nn from transformers import BertModel, BertTokenizerFast class SignToText(nn.Module): def __init__(self, num_classes=1000): super(SignToText, self).__init__() # 假设已经加载好了预训练好的BERT tokenizer 和 model self.tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese') self.bert_model = BertModel.from_pretrained('bert-base-chinese') # 定义其他必要的子网... def forward(self, input_ids=None, attention_mask=None, token_type_ids=None): outputs = self.bert_model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) sequence_output = outputs.last_hidden_state # 继续定义后续操作... model = SignToText() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值