2020-01-11

2020年的计划(鞭笞文)

###此文为鞭策自己也是敲打自己来学习的,并非参考文档。原因是长久松懈学习,态度和思想落后,所以想做出改变,不想被时代淘汰。每一次付出的努力都是不断变强的支柱。考研也不是只想再会学校躺尸,而是为了获取进修的机会。这个要时刻记住。
从2019年10月份开始,就一直想给自己定个2020计划。奈何最近忙碌加懒癌,收集的信息未能支撑起开始目标的达成–考研和成为高级测试工程师。
前半年,重心在学习和巩固测试的知识。比如已经初步了解了html,开始接触和收集js的知识模块。平常不想再看电子屏幕时,就会拿起《计算机网络基础》或JAVA的纸质书,很突兀地闯进it行业,随着时间的推移,接触的行业知识越来越多,也察觉到自己的基础太过薄弱,于是打着考研的幌子逼迫自己偷偷补习最基础的知识。
当然,考研虽说是幌子,但是只能骗骗自己而已。我今年的目标就是它,不过计划前半年每天两个小时轻松模式,后半年三个月每天6小时,后三个月每天八小时模式。之所以做出这样的拟定计划,是因为我还没办法判断出到底是提升学历重要还是专研测试重要。所以,先搞个看似两全其美的计划。后期肯定得做出取舍的,或许会很辛苦或痛苦,但是决定了就要执行下去。
最近收获的知识是,能用python和unittest写出网页测试自动化,也开始在git上练习搭建项目,争取在六月份之前把自己练习git的笔记和参与过的项目上传上去。
第一季的目标是熟悉js,要能看懂开发的代码和自己手动写两个项目,哪怕是大路货的项目也行。
1月份的目标是熟练git的命令和掌握js的基础语法和收集考研信息包括不限于志愿学校。还是太懒了,没能了解更多。还有19天,要好好努力。

  • List item

2月初评价:总而言之,目标未完成,git命令掌握了基本的使用,但是不熟练,js的基础语法只是看了一遍,和C语言相差不多,不过加了个对象引用,但是这些只是基本的数据类型,连一些其他的循环语句和表达式都没学。考研信息收集了一部分,但是确定的目标太高,在纠结,不过至少也要争取能过线深圳大学。今天,又在制作课程表和下载一些学习软件来规划学习,如学习强国准备政治,forest约束玩手机,墨墨背单词,专业课的视频从b站获取,数学教程也是。

2月新目标:熟悉js,看懂DOM,BOM,会使用jquery,不用掌握。同时看完操作系统的视频并做好笔记。鉴于目前新型冠状肺炎的影响,放假到9号,时间较为充裕,另外把计算机网络的视频也要学习完毕。

MATLAB主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性内容概要:本文主要介绍了一种在MATLAB环境下实现的主动噪声和振动控制算法,该算法针对较大的次级路径变化具有较强的鲁棒性。文中详细阐述了算法的设计原理与实现方法,重点解决了传统控制系统中因次级路径动态变化导致性能下降的问题。通过引入自适应机制和鲁棒控制策略,提升了系统在复杂环境下的稳定性和控制精度,适用于需要高精度噪声与振动抑制的实际工程场景。此外,文档还列举了多个MATLAB仿真实例及相关科研技术服务内容,涵盖信号处理、智能优化、机器学习等多个交叉领域。; 适合人群:具备一定MATLAB编程基础和控制系统理论知识的科研人员及工程技术人员,尤其适合从事噪声与振动控制、信号处理、自动化等相关领域的研究生和工程师。; 使用场景及目标:①应用于汽车、航空航天、精密仪器等对噪声和振动敏感的工业领域;②用于提升现有主动控制系统对参数变化的适应能力;③为相关科研项目提供算法验证与仿真平台支持; 阅读建议:建议读者结合提供的MATLAB代码进行仿真实验,深入理解算法在不同次级路径条件下的响应特性,并可通过调整控制参数进一步探究其鲁棒性边界。同时可参考文档中列出的相关技术案例拓展应用场景。
感谢你提供的列名信息,我们可以看到: - `"...1"`:可能是 Excel 中第一列无标题的自动命名(比如行号或空列),可以忽略。 - `"STATION"`:站点编号 - `"NAME"`:站点名称 - `"LATITUDE"`:纬度 - `"LONGITUDE"`:经度 - `"ELEVATION"`:海拔 - `"statement"`:可能是一个状态或注释字段 - 后续从 `"2020-01-01"` 到 `"2020-01-31"` 是每日风速数据(共31天) --- ### ✅ 目标更新: 你要做的是:**根据给定的 SHP 范围裁剪站点,保留落在该地理范围内的所有站点及其完整的逐日风速数据。** 下面是适配你实际列名的完整 R 语言代码,并处理好坐标、投影和数据结构问题。 ```r # 加载所需包 library(sf) library(readxl) library(dplyr) # ------------------- 参数设置 ------------------- excel_file <- "your_wind_station_data.xlsx" # 替换为你的实际文件路径 sheet_name <- "Sheet1" # 替换为你的工作表名 shp_file <- "your_boundary.shp" # 替换为你的SHP文件路径 # ------------------- 步骤1: 读取Excel数据 ------------------- df <- read_excel(excel_file, sheet = sheet_name) # 查看列名确认 names(df) <- make.names(names(df)) # 确保列名是合法的(防止空格等问题) cat("原始列名:\n"); print(names(df)) # ------------------- 步骤2: 提取空间信息并创建sf对象 ------------------- # 使用 LATITUDE 和 LONGITUDE 创建空间点(注意:顺序是 LON, LAT) stations_sf <- st_as_sf(df, coords = c("LONGITUDE", "LATITUDE"), # 经度在前,纬度在后 crs = 4326, # WGS84 地理坐标系 dim = "XY") # ------------------- 步骤3: 读取SHP边界并确保其CRS ------------------- boundary <- st_read(shp_file) # 如果boundary不是投影坐标系(如EPSG:32649),则需要检查并转换 # 假设你知道目标投影是 UTM Zone 49N (EPSG:32649),我们统一到这个坐标系进行空间操作 if (is.na(st_crs(boundary))) { stop("SHP文件没有坐标系信息,请先定义正确的CRS!") } # 将站点数据重投影到与SHP相同的坐标系下进行空间判断 stations_projected <- st_transform(stations_sf, crs = st_crs(boundary)) # ------------------- 步骤4: 空间裁剪 —— 找出在SHP范围内的站点 ------------------- # 使用 st_intersects 或 st_within 进行空间子集提取 # 这里使用 [s,t] 语法:返回落在任意多边形内的站点 stations_clipped <- stations_projected[boundary, , op = st_intersects] # 若你想更严格地要求“完全包含”,可用 st_within,但通常 st_intersects 更通用 # ------------------- 步骤5: 转回原始经纬度并提取属性表格 ------------------- # 将结果转回WGS84以便保留原始经纬度格式输出 stations_wgs84 <- st_transform(stations_clipped, crs = 4326) # 去掉geometry列,恢复为普通data.frame,同时保留原始所有列(包括每日数据) result_df <- st_drop_geometry(stations_wgs84) # 可选:重新排序列,把时间序列放在后面 date_cols <- grep("^\\d{4}-\\d{2}-\\d{2}", names(result_df), value = TRUE) non_date_cols <- setdiff(names(result_df), date_cols) final_df <- select(result_df, c(non_date_cols, date_cols)) # 按逻辑排序 # ------------------- 步骤6: 导出结果 ------------------- write.csv(final_df, "clipped_stations_202001.csv", row.names = FALSE, na = "") cat("共保留了", nrow(final_df), "个站点在SHP范围内。\n") ``` --- ### ✅ 关键说明: | 功能 | 说明 | |------|------| | `coords = c("LONGITUDE", "LATITUDE")` | 必须是 **经度在前,纬度在后**,否则位置错误! | | `crs = 4326` | 表示输入的经纬度使用 WGS84 坐标系 | | `st_transform(...)` | 将点从地理坐标(度)转为投影坐标(米),确保与 SHP 在同一空间参考下比较 | | `st_intersects` | 判断点是否与多边形相交(即落在内部),适用于大多数情况 | | `st_drop_geometry()` | 移除空间结构,得到纯数据框用于导出 | > 💡 输出的 CSV 文件将包含原始所有列,包括 `STATION`, `NAME`, `LATITUDE`, `LONGITUDE`, `ELEVATION`, `statement` 和所有日期列(如 `2020-01-01` 等),仅保留位于 SHP 范围内的站点。 --- ### ✅ 示例输出片段(final_df 头几行): ``` ...1 STATION NAME LATITUDE LONGITUDE ELEVATION statement 2020-01-01 2020-01-02 ... 1 1 101 Beijing 39.90 116.4 50.0 good 3.2 4.1 2 2 102 Tianjin 39.08 117.2 10.0 good 5.0 3.8 ... ``` --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值