Python机器学习实战之逻辑回归

本文深入解析了逻辑回归模型的原理及应用,包括模型的基本数学表达式、梯度上升法与随机梯度上升法的具体实现,同时提供了详细的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有关逻辑回归模型的理论知识: 逻辑回归模型(logistic regression)

简要回顾一下逻辑回归进行分类任务:逻辑回归使用函数y = sigmoid(wx+b)  (通常把b包含在w向量内,直接写成y = g(z),z = wx)。 对于输入样本xi,若yi>0.5则判读为正例,否则为反例。

因此最重要的就是确认模型参数w。常用方法是写出代价函数,使用梯度下降法,核心公式如下:


《机器学习实战》代码
书中为梯度上升法,与梯度下降法原理相同,前者向正梯度方向修改参数,用来求极大值。后者向负梯度方向修改参数,用来求极小值。
PS: 书中使用梯度上升法求解的原因是因为其梯度公式中为(y-h(x)),而不像上图中为(h(x)-y),因此“-”号变正号,梯度下降变梯度上升。

(1)普通梯度上升法
def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)             #转换为numpy矩阵
    labelMat = mat(classLabels).transpose() #转换为numpy矩阵并转置
    m,n = shape(dataMatrix)
    alpha = 0.001     #更新步长
    maxCycles = 500   #最大更新次数
    weights = ones((n,1))
    for k in range(maxCycles):              
        h = sigmoid(dataMatrix*weights)     #逻辑回归预测
        error = (labelMat - h)              #误差,文中图误差为(h - labelMat)
        weights = weights + alpha * dataMatrix.transpose()* error
        #梯度更新公式(矩阵形式),和文中图给出不同的就是差个-号
    return weights
用梯度上升法训练数据:
import log_reg
dataArr,labelMat = log_reg.loadDataSet()
weights = log_reg.gradAscent(dataArr,labelMat)  #梯度上升算法
weights
matrix([[ 4.12414349],
        [ 0.48007329],
        [-0.6168482 ]])
log_reg.plotBestFit(weights.getA())   #绘制决策分界


(2)随机梯度上升法

从weights(或者叫theta)更新公式中可以看出,每一个weights更新都需要遍历所有样本(1~m),当样本数据巨大时(10^6以上),计算量是十分恐怖的,因此随机梯度法就是随机选取某一样本计算梯度,计算量大大减少。

但很显然,只选择一个样本进行模型更新,模型会更加符合该样本,而不一定符合所有样本,因此更常用的做法是每次取出少量的数据样本进行模型更新(例如16,32,64等,速度并不会比只计算一个样本慢太多)。 此外,在接近极值处,如果步长较大,可能出现反复振荡,始终达不到要求的精度范围,因此,还可以随着迭代次数的增加逐渐减小步长。
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)
    weights = ones(n)   #全部初始化为1
    for j in range(numIter):
        dataIndex = range(m) #1~m随机数
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.0001
            #步长逐渐减小,但不会等于0(等于0将无法更新)
            randIndex = int(random.uniform(0,len(dataIndex)))#从1~m中随机选取一个样本
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            del(dataIndex[randIndex]) #已选过的样本不会再选
    return weights

(3)分类函数
这个简单,不多说了
def classifyVector(inX, weights):
    prob = sigmoid(sum(inX*weights))
    if prob > 0.5: return 1.0
    else: return 0.0
(4)分类实验
预测患有‘疝’病的马的存活问题(二分类任务),输入的样本数据(299*21),测试样本为(67*21),使用所给函数预测错误率0.37,效果不太好,具体问题还是得画学习曲线分析:机器学习模型评价

完整代码

'''
Created on Oct 27, 2010
Logistic Regression Working Module
@author: Peter
'''
from numpy import *

def loadDataSet():
    dataMat = []; labelMat = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

def sigmoid(inX):
    return 1.0/(1+exp(-inX))

def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)             #convert to NumPy matrix
    labelMat = mat(classLabels).transpose() #convert to NumPy matrix
    m,n = shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = ones((n,1))
    for k in range(maxCycles):              #heavy on matrix operations
        h = sigmoid(dataMatrix*weights)     #matrix mult
        error = (labelMat - h)              #vector subtraction
        weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
    return weights

def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0]
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()

def stocGradAscent0(dataMatrix, classLabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)   #initialize to all ones
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)
    weights = ones(n)   #initialize to all ones
    for j in range(numIter):
        dataIndex = range(m)
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.0001    #apha decreases with iteration, does not
            randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            del(dataIndex[randIndex])
    return weights

def classifyVector(inX, weights):
    prob = sigmoid(sum(inX*weights))
    if prob > 0.5: return 1.0
    else: return 0.0

def colicTest():
    frTrain = open('horseColicTraining.txt'); frTest = open('horseColicTest.txt')
    trainingSet = []; trainingLabels = []
    for line in frTrain.readlines():
        currLine = line.strip().split('\t')
        lineArr =[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        trainingSet.append(lineArr)
        trainingLabels.append(float(currLine[21]))
    trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000)
    errorCount = 0; numTestVec = 0.0
    for line in frTest.readlines():
        numTestVec += 1.0
        currLine = line.strip().split('\t')
        lineArr =[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]):
            errorCount += 1
    errorRate = (float(errorCount)/numTestVec)
    print "the error rate of this test is: %f" % errorRate
    return errorRate

def multiTest():
    numTests = 10; errorSum=0.0
    for k in range(numTests):
        errorSum += colicTest()
    print "after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值