有关逻辑回归模型的理论知识:
逻辑回归模型(logistic regression)
简要回顾一下逻辑回归进行分类任务:逻辑回归使用函数y = sigmoid(wx+b) (通常把b包含在w向量内,直接写成y = g(z),z = wx)。
对于输入样本xi,若yi>0.5则判读为正例,否则为反例。
因此最重要的就是确认模型参数w。常用方法是写出代价函数,使用梯度下降法,核心公式如下:
《机器学习实战》代码
书中为梯度上升法,与梯度下降法原理相同,前者向正梯度方向修改参数,用来求极大值。后者向负梯度方向修改参数,用来求极小值。
PS: 书中使用梯度上升法求解的原因是因为其梯度公式中为(y-h(x)),而不像上图中为(h(x)-y),因此“-”号变正号,梯度下降变梯度上升。
(1)普通梯度上升法
def gradAscent(dataMatIn, classLabels):
dataMatrix = mat(dataMatIn) #转换为numpy矩阵
labelMat = mat(classLabels).transpose() #转换为numpy矩阵并转置
m,n = shape(dataMatrix)
alpha = 0.001 #更新步长
maxCycles = 500 #最大更新次数
weights = ones((n,1))
for k in range(maxCycles):
h = sigmoid(dataMatrix*weights) #逻辑回归预测
error = (labelMat - h) #误差,文中图误差为(h - labelMat)
weights = weights + alpha * dataMatrix.transpose()* error
#梯度更新公式(矩阵形式),和文中图给出不同的就是差个-号
return weights
用梯度上升法训练数据:
import log_reg
dataArr,labelMat = log_reg.loadDataSet()
weights = log_reg.gradAscent(dataArr,labelMat) #梯度上升算法
weights
matrix([[ 4.12414349],
[ 0.48007329],
[-0.6168482 ]])
log_reg.plotBestFit(weights.getA()) #绘制决策分界
(2)随机梯度上升法
从weights(或者叫theta)更新公式中可以看出,每一个weights更新都需要遍历所有样本(1~m),当样本数据巨大时(10^6以上),计算量是十分恐怖的,因此随机梯度法就是随机选取某一样本计算梯度,计算量大大减少。
但很显然,只选择一个样本进行模型更新,模型会更加符合该样本,而不一定符合所有样本,因此更常用的做法是每次取出少量的数据样本进行模型更新(例如16,32,64等,速度并不会比只计算一个样本慢太多)。
此外,在接近极值处,如果步长较大,可能出现反复振荡,始终达不到要求的精度范围,因此,还可以随着迭代次数的增加逐渐减小步长。
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m,n = shape(dataMatrix)
weights = ones(n) #全部初始化为1
for j in range(numIter):
dataIndex = range(m) #1~m随机数
for i in range(m):
alpha = 4/(1.0+j+i)+0.0001
#步长逐渐减小,但不会等于0(等于0将无法更新)
randIndex = int(random.uniform(0,len(dataIndex)))#从1~m中随机选取一个样本
h = sigmoid(sum(dataMatrix[randIndex]*weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del(dataIndex[randIndex]) #已选过的样本不会再选
return weights
(3)分类函数
这个简单,不多说了
def classifyVector(inX, weights):
prob = sigmoid(sum(inX*weights))
if prob > 0.5: return 1.0
else: return 0.0
(4)分类实验
预测患有‘疝’病的马的存活问题(二分类任务),输入的样本数据(299*21),测试样本为(67*21),使用所给函数预测错误率0.37,效果不太好,具体问题还是得画学习曲线分析:机器学习模型评价
预测患有‘疝’病的马的存活问题(二分类任务),输入的样本数据(299*21),测试样本为(67*21),使用所给函数预测错误率0.37,效果不太好,具体问题还是得画学习曲线分析:机器学习模型评价
完整代码
'''
Created on Oct 27, 2010
Logistic Regression Working Module
@author: Peter
'''
from numpy import *
def loadDataSet():
dataMat = []; labelMat = []
fr = open('testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat,labelMat
def sigmoid(inX):
return 1.0/(1+exp(-inX))
def gradAscent(dataMatIn, classLabels):
dataMatrix = mat(dataMatIn) #convert to NumPy matrix
labelMat = mat(classLabels).transpose() #convert to NumPy matrix
m,n = shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights = ones((n,1))
for k in range(maxCycles): #heavy on matrix operations
h = sigmoid(dataMatrix*weights) #matrix mult
error = (labelMat - h) #vector subtraction
weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
return weights
def plotBestFit(weights):
import matplotlib.pyplot as plt
dataMat,labelMat=loadDataSet()
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if int(labelMat[i])== 1:
xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = arange(-3.0, 3.0, 0.1)
y = (-weights[0]-weights[1]*x)/weights[2]
ax.plot(x, y)
plt.xlabel('X1'); plt.ylabel('X2');
plt.show()
def stocGradAscent0(dataMatrix, classLabels):
m,n = shape(dataMatrix)
alpha = 0.01
weights = ones(n) #initialize to all ones
for i in range(m):
h = sigmoid(sum(dataMatrix[i]*weights))
error = classLabels[i] - h
weights = weights + alpha * error * dataMatrix[i]
return weights
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m,n = shape(dataMatrix)
weights = ones(n) #initialize to all ones
for j in range(numIter):
dataIndex = range(m)
for i in range(m):
alpha = 4/(1.0+j+i)+0.0001 #apha decreases with iteration, does not
randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
h = sigmoid(sum(dataMatrix[randIndex]*weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del(dataIndex[randIndex])
return weights
def classifyVector(inX, weights):
prob = sigmoid(sum(inX*weights))
if prob > 0.5: return 1.0
else: return 0.0
def colicTest():
frTrain = open('horseColicTraining.txt'); frTest = open('horseColicTest.txt')
trainingSet = []; trainingLabels = []
for line in frTrain.readlines():
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21]))
trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000)
errorCount = 0; numTestVec = 0.0
for line in frTest.readlines():
numTestVec += 1.0
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]):
errorCount += 1
errorRate = (float(errorCount)/numTestVec)
print "the error rate of this test is: %f" % errorRate
return errorRate
def multiTest():
numTests = 10; errorSum=0.0
for k in range(numTests):
errorSum += colicTest()
print "after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))