MATLAB中的svd与svds

本文探讨了在处理大量图像数据时使用奇异值分解(SVD)进行主成分分析(PCA)的方法。通过对比MATLAB中svd与svds函数的区别,介绍了如何有效减少内存消耗并获取关键特征值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设A为m*n阶矩阵,A'表示A的转置矩阵,A'*A的n个特征值的非负平方根叫作A的奇异值。记为σi(A)。

这几天做实验涉及到奇异值分解svd(singular value decomposition),涉及到这样的一个问题,

做PCA时候400幅图像拉成向量按列摆放,结果摆成了比如说10000*400大小的矩阵,

用到svd函数进行奇异值分解找主分量,结果MATLAB提示超出内存,后来想起还有个函数叫svds,看到别人用过,以为只是一个变体,没什么区别,就用上了,结果确实在预料之中。但是今天觉得不放心,跑到变量里面看了下,发现这个大的矩阵被分解成了

三个10000*6,6*6,400*6大小的矩阵的乘积,而不是普通的svd分解得到的10000*10000,10000*400,400*400大小的矩阵乘积,把我吓了一跳,都得到预期的结果,难不成这里还出个篓子?赶紧试验,

发现任给一个M*N大小的矩阵,都是被分解成了M*6,6*6,N*6大小的矩阵的乘积,为什么都会出现6呢?确实很纳闷。help svds看了一下,发现SVDS(A) 返回的就是svds返回的就是最大的6个特征值及其对应的特征行向量和特征列向量,

还好,我们实验中是在svds得到列向量中再取前5个最大的列向量,这个与普通的svd得到的结果是一致的,虚惊一场。。。还得到了一些别的,比如

改变这个默认的设置,

比如用[u,d,v]=svds(A,10)将得到最大的10个特征值及其对应的最大特征行向量和特征列向量

[u,d,v]=svds(A,10,0)将得到最小的10个特征值及其对应的特征行向量和特征列向量,

[u,d,v]=svds(A,10,2)将得到与2最接近的10个特征值及其对应的特征行向量和特征列向量。

总之,相比svd,svds的可定制性更强。

奇异值分解非常有用,对于矩阵A(m*n),存在U(m*m),V(n*n),S(m*n),满足A = U*S*V’。

U和V中分别是A的奇异向量,而S是A的奇异值。

AA'的正交单位特征向量组成U,特征值组成S'S

A'A的正交单位特征向量组成V,特征值(与AA'相同)组成SS'。因此,奇异值分解和特征值问题紧密联系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值