QT+opencv学习笔记(5)——霍夫直线检测、圆检测及椭圆检测

本文介绍了在QT5.8和OpenCV3.2环境下,使用Hough变换进行直线、圆和椭圆检测的详细过程。包括Hough直线检测的两种方法——标准霍夫变换和概率霍夫变换,以及霍夫圆检测的霍夫梯度法。此外,还提及了椭圆检测的算法步骤,通过边缘检测和距离计算找到椭圆参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开发环境为:win10+QT5.8+opencv3.2

      Hough变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛。最基本的Hough变换是从黑白图像中检测直线,还可以经过改进检测圆、椭圆、正方形等。本文主要实现Hough直线检测Hough圆检测Hough椭圆检测

一、读取图像

         读取图像见QT+opencv学习笔记(1)——图像点运算,这里不再赘述。

        读取结果如下图:

二、Hough直线检测

    使用Hough变换进行直线检测, 首先要从原始图像中提取出边缘信息, 将原图转换成一个二值化的边缘轮廓图, 然后将这个二值边缘图中的采样点映射到Hough参数空间中的直线b=-xa+y, 在参数空间中绘制出直线后,在每一个点上进行统计,点的数值代表参数空间中穿过该点直线的数目。如图1-1所示, 由于图像空间中的点对应于参数空间中的直线, 而图像空间中的直线相应地对应于参数空间中的点, 因此在二维累加器中统计各点数值后所找到超过一定阈值的峰值点就是图像空间中的直线。

图1-1直线Hough变换的对应关系

    在具体操作中,通常使用直线的法线式。因为当直线平行于纵轴时,直线方程 y=ax+b中参数a趋于无穷大,无法在参数空间中进行统计,而使用直线的法线式可以检测出这类直线。图像空间x-y中的直线法线式如下:

    其中,ρ为直线L到原点的距离;θ为直线 L与x轴正方向的夹角,根据上式,直线L 上不同的点在参数平面ρ-θ中被变换为一簇相交于t点的正弦曲线。显然,若能确定参数平面中的t点,就实现了直线检测。在实际计算中,根据图像空间中的数据点计算Hough 参数空间中的正弦曲线轨迹,在参数平面上进行二维统计,选取峰值。该峰值就是图像空间中一条直线的参数,从而实现了图像空间中的直线检测。

    在opencv中分别有HoughLines()函数和HoughLinesP()函数可以实现Hough直线检测。

    HoughLines()函数实现方式为标准霍夫变换。标准霍夫变换本质上是把图像映射到它的参数空间上,它需要计算所有的M个边缘点,这样它的运算量和所需内存空间都会很大。 

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值