最长不下降子序列

本文介绍了一种基于动态规划的简单算法,用于求解给定数列中最长不下降子序列的长度,并提供了一个具体实例来说明算法的实现过程。

问题描述:给出n个数,求出其最长不下降子序列的长度,比如n=5,5个数是{4,6,5,7,3};其最长下降子序列就是{4,6,7},长度为3。

一、简单的O(n^2)的算法

         很容易想到用动态规划做。设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i>j。然后在lis[]中找到最大的一个值,时间复杂度是O(n^2)。

public class Longest_sequence {
 public void Longest_sequence(int[] arr)
 {
  int[] n=new int[arr.length];
 for(int i=0;i<arr.length;i++)
 {
  n[i]=1;
  for(int j=1;j<i;j++)
  {
   
   if(n[i]<=n[j]&&arr[i]>arr[j])
   {
    n[i]=n[j]+1;
   }
   else if(n[i]<n[j]&&arr[i]<=arr[j])
   {
    n[i]=n[i-1];
   }
  }
  
 }
     int max=0;
  for(int m=0;m<arr.length;m++)
  {
   if(max<n[m])
    max=n[m];
  }
  System.out.println("max value is "+max);
 }
 
 public static void main(String[] args) {
  // TODO Auto-generated method stub
  Longest_sequence ls=new Longest_sequence();
       int[] a={3,18,7,14,10,12,23,41,16,24};
       ls.Longest_sequence(a);     
 }

}

### 使用单调队列实现最长下降子序列算法 单调队列是一种高效的优化方法,可以将原本复杂度为 \( O(n^2) \) 的动态规划算法优化到 \( O(n \log n) \)[^1]。以下是使用单调队列求解最长下降子序列(LIS)的详细算法和实现。 #### 算法思想 在求解最长下降子序列时,动态规划的核心是维护一个数组 `dp`,其中 `dp[i]` 表示以第 `i` 个元素结尾的最长下降子序列的长度。然而,这种方法的时间复杂度较高,因此需要借助单调队列进行优化[^4]。 单调队列优化的核心思想是:对于一个单调递增的序列,只需要记录每个长度对应的最小值即可[^2]。具体来说: - 使用一个数组 `f` 来存储当前可能成为 LIS 的候选序列。 - 遍历输入序列中的每个元素,通过二分查找确定该元素在 `f` 中的位置,并更新 `f` 的值。 #### 实现步骤 以下是基于单调队列的最长下降子序列算法的 Python 实现: ```python def lis_with_monotonic_queue(nums): if not nums: return 0 # 定义一个列表 f,用于存储当前的 LIS 候选序列 f = [] for num in nums: # 使用二分查找找到 num 在 f 中的插入位置 left, right = 0, len(f) while left < right: mid = (left + right) // 2 if f[mid] <= num: # 找到第一个大于 num 的位置 left = mid + 1 else: right = mid # 如果 left 等于 len(f),说明 num 比 f 中的所有数都大,直接追加 if left == len(f): f.append(num) else: # 否则替换掉第一个大于等于 num 的数 f[left] = num # 最终 f 的长度即为最长下降子序列的长度 return len(f) # 示例用法 nums = [11, 12, 13, 9, 8, 17, 19] print(lis_with_monotonic_queue(nums)) # 输出 5 ``` #### 代码解析 1. **初始化**:创建一个空列表 `f`,用于存储当前的 LIS 候选序列。 2. **遍历输入序列**:对每个元素 `num`,通过二分查找找到其在 `f` 中的插入位置。 3. **更新候选序列**: - 如果 `num` 大于 `f` 中的所有元素,则将其追加到 `f` 的末尾。 - 否则,替换掉 `f` 中第一个大于等于 `num` 的元素。 4. **返回结果**:最终 `f` 的长度即为最长下降子序列的长度。 #### 时间复杂度分析 - **二分查找**:每次查找的时间复杂度为 \( O(\log n) \)。 - **总复杂度**:由于需要对每个元素进行一次二分查找,因此总时间复杂度为 \( O(n \log n) \)[^1]。 #### 注意事项 1. 单调队列优化适用于严格递增或递减的子序列问题。 2. 如果需要输出具体的最长下降子序列,可以通过额外的回溯操作实现[^3]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值