Synchronized、Lock和Atomic性能测试
package concurrency;
import java.util.Random;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
// 普通方法/Synchronized内置锁/Lock显示锁/Atomic操作的性能对比 单位(纳秒)
abstract class Accumulator {
public static long cycles = 50000l;
private static final int N = 4;
public static ExecutorService exec = Executors.newFixedThreadPool(N * 2);
private static CyclicBarrier barrier =
new CyclicBarrier(N*2 + 1);
protected volatile int index = 0;
protected volatile long value = 0;
protected long duration = 0;
protected String id = "error";
protected final static int SIZE = 100000;
protected static int[] preLoaded = new int[SIZE];
static {
Random rand = new Random(47);
for (int i = 0; i < SIZE; i++) {
preLoaded[i] = rand.nextInt();
}
}
public abstract void accumulate();
public abstract long read();
private class Modifier implements Runnable {
@Override
public void run() {
for (int i = 0; i < cycles; i++) {
accumulate();
}
try {
barrier.await();
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}
private class Reader implements Runnable {
private volatile long value;
@Override
public void run() {
for (int i = 0; i < cycles; i++) {
value = read();
}
try {
barrier.await();
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}
public void timedTest() {
long start = System.nanoTime();
for (int i = 0; i < N; i++) {
exec.execute(new Modifier());
exec.execute(new Reader());
}
try {
barrier.await(); // 保障当前cycles测试完毕,才会进入下一个新cycles测试
} catch (Exception e) {
throw new RuntimeException(e);
}
duration = System.nanoTime() - start;
System.out.print(String.format("%-13s: %13d\n", id, duration));
}
public static void report(Accumulator acc1, Accumulator acc2) {
System.out.print(String.format("%-22s: %.2f\n", acc1.id + "/" + acc2.id,
(double) acc1.duration / (double) acc2.duration));
}
}
class BaseLine extends Accumulator {
{ id = "BaseLine"; }
public void accumulate() {
int ind = index++;
if (ind >= SIZE) {
index = 0;
value += preLoaded[0];
} else {
value += preLoaded[ind];
}
}
public long read() { return value; }
}
class SynchronizedTest extends Accumulator {
{ id = "Synchronized"; }
public synchronized void accumulate() {
value += preLoaded[index++];
if (index >= SIZE) index = 0;
}
public synchronized long read() { return value; }
}
class LockTest extends Accumulator {
{ id = "Lock"; }
private Lock lock = new ReentrantLock();
@Override
public void accumulate() {
lock.lock();
try {
value += preLoaded[index++];
if (index >= SIZE) index = 0;
} finally {
lock.unlock();
}
}
public long read() {
lock.lock();
try {
return value;
} finally {
lock.unlock();
}
}
}
class AtomicTest extends Accumulator {
{ id = "Atomic"; }
private AtomicInteger index = new AtomicInteger(0);
private AtomicLong value = new AtomicLong(0);
public void accumulate() {
int i = index.getAndIncrement();
if (i >= SIZE) {
index.set(0);
value.getAndAdd(0);
} else {
value.getAndAdd(preLoaded[i]);
}
}
public long read() {
return value.get();
}
}
public class SynchronizationComarisons {
static BaseLine baseLine = new BaseLine();
static SynchronizedTest synch = new SynchronizedTest();
static LockTest lock = new LockTest();
static AtomicTest atomic = new AtomicTest();
static void test() {
System.out.println("==================================");
System.out.print(String.format("%-12s : %13d\n", "Cycles", Accumulator.cycles));
baseLine.timedTest();
synch.timedTest();
lock.timedTest();
atomic.timedTest();
Accumulator.report(synch, baseLine);
Accumulator.report(lock, baseLine);
Accumulator.report(atomic, baseLine);
Accumulator.report(synch, lock);
Accumulator.report(synch, atomic);
Accumulator.report(lock, atomic);
}
public static void main(String[] args) {
int iterations = 5;
System.out.println("Warmup");
baseLine.timedTest();
for (int i = 0; i < iterations; i++) {
test();
Accumulator.cycles *= 2;
}
Accumulator.exec.shutdownNow();
}
}
/*output
Warmup
BaseLine : 18430064
==================================
Cycles : 50000
BaseLine : 13395434
Synchronized : 43795774
Lock : 31507496
Atomic : 11334757
Synchronized/BaseLine : 3.27
Lock/BaseLine : 2.35
Atomic/BaseLine : 0.85
Synchronized/Lock : 1.39
Synchronized/Atomic : 3.86
Lock/Atomic : 2.78
==================================
Cycles : 100000
BaseLine : 26103847
Synchronized : 123044307
Lock : 42068748
Atomic : 18362378
Synchronized/BaseLine : 4.71
Lock/BaseLine : 1.61
Atomic/BaseLine : 0.70
Synchronized/Lock : 2.92
Synchronized/Atomic : 6.70
Lock/Atomic : 2.29
==================================
Cycles : 200000
BaseLine : 52618563
Synchronized : 233851583
Lock : 81057204
Atomic : 41032168
Synchronized/BaseLine : 4.44
Lock/BaseLine : 1.54
Atomic/BaseLine : 0.78
Synchronized/Lock : 2.89
Synchronized/Atomic : 5.70
Lock/Atomic : 1.98
==================================
Cycles : 400000
BaseLine : 112605702
Synchronized : 447144399
Lock : 176562031
Atomic : 66380390
Synchronized/BaseLine : 3.97
Lock/BaseLine : 1.57
Atomic/BaseLine : 0.59
Synchronized/Lock : 2.53
Synchronized/Atomic : 6.74
Lock/Atomic : 2.66
==================================
Cycles : 800000
BaseLine : 207776803
Synchronized : 1004449102
Lock : 351125515
Atomic : 133602972
Synchronized/BaseLine : 4.83
Lock/BaseLine : 1.69
Atomic/BaseLine : 0.64
Synchronized/Lock : 2.86
Synchronized/Atomic : 7.52
Lock/Atomic : 2.63
* */
随着循环次数cycles成倍增大,Synchronized的性能变得越来越低,Atomic和Lock的性能始终处于稳定状态,从结果看Atomic性能更高(因为资源竞争并不激烈,只有8个线程,其中4个线程写操作,4个读操作)
建议多线程开发中对资源共享互斥操作使用Lock