equals and hashcode

Java中equals与hashCode的重要性
本文探讨了在Java中正确实现equals和hashCode方法的必要性。仅覆盖equals可能导致Map存储重复项,而仅覆盖hashCode则可能导致Map无法识别相等的对象。深入理解两者的关系对于避免编程陷阱至关重要。

https://stackoverflow.com/questions/2265503/why-do-i-need-to-override-the-equals-and-hashcode-methods-in-java

https://stackoverflow.com/questions/27581/what-issues-should-be-considered-when-overriding-equals-and-hashcode-in-java?rq=1

Override only equals

If only equals is overriden, then when you call myMap.put(first,someValue) first will hash to some bucket and when you call myMap.put(second,someOtherValue) it will hash to some other bucket (as they have a different hashCode). So, although they are equal, as they don’t hash to the same bucket, the map can’t realize it and both of them stay in the map.

Although it is not necessary to override equals() if we override hashCode(), let’s see what would happen in this particular case where we know that two objects of MyClass are equal if their importantField is equal but we do not override equals().

Override only hashCode

Imagine you have this

MyClass first = new MyClass(“a”,“first”);
MyClass second = new MyClass(“a”,“second”);

If you only override hashCode then when you call myMap.put(first,someValue) it takes first, calculates its hashCode and stores it in a given bucket. Then when you call myMap.put(second,someOtherValue) it should replace first with second as per the Map Documentation because they are equal (according to the business requirement).

But the problem is that equals was not redefined, so when the map hashes second and iterates through the bucket looking if there is an object k such that second.equals(k) is true it won’t find any as second.equals(first) will be false.

Hashing retrieval is a two-step process:

Find the right bucket (using hashCode())
Search the bucket for the right element (using equals() )

【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值