STM32的串口通信UART/TTL

本文详细介绍了STM32的串口配置,包括STM32F103C8T6和STM32F401CCU6的串口分配,并讲解了串口中断模式,如TXE、RXNE、TC等中断源和待处理位。还讨论了串口通信编程中的常见问题,如缓冲区溢出、非请求响应和响应等待时间,提出了解决方案。最后,展示了如何实现串口发送和接收的消息处理函数。

常用的串口pin

STM32的串口是基础通信方式, 每个型号都带多组串口, 一般都使用默认的组, 可以参考芯片的datasheet, 去看pinout and pin definitions,

stm32f103c8t6

这是48pin的芯片, 提供3组串口, 注意USART1是APB2, USART2和3都是PBA1. 各组串口的pin脚为

USART2USART1USART3
总线APB1APB2APB1
TXPA2PA9PB10
RXPA3PA10PB11
CTSPA0PA11PB13
RTSPA1PA12PB14
CKPA4PA8PB12

可以同时使用三组UART: USART1(PA9, PA10), USART2(PA2, PA3), USART3(PB10, PB11)

stm32f401ccu6

USART1和USART6是APB2, USART2是APB1

USART2USART1USART6
总线APB1APB2APB2
TXPA2PA9 / PB6PA11
RXPA3PA10 / PB7PA12
CTSPA0PA11PB13
RTSPA1PA12PB14
CKPA4PA8PC8

可以同时使用三组UART: USART1(PA9, PA10)或(PB6, PB7), USART2(PA2, PA3), USART6(PA11, PA12)

串口相关的中断

Interrupt Mode
  ===============
  In Interrupt Mode, the USART communication can be managed by 8 interrupt sources and 10 pending bits: 

  Pending Bits:
  ------------- 
     1. USART_IT_TXE :  to indicate the status of the transmit buffer register
     2. USART_IT_RXNE : to indicate the status of the receive buffer register
     3. USART_IT_TC :   to indicate the status of the transmit operation
     4. USART_IT_IDLE : to indicate the status of the Idle Line
     5. USART_IT_CTS :  to indicate the status of the nCTS input
     6. USART_IT_LBD :  to indicate the status of the LIN break detection
     7. USART_IT_NE :   to indicate if a noise error occur
     8. USART_IT_FE :   to indicate if a frame error occur
     9. USART_IT_PE :   to indicate if a parity error occur
    10. USART_IT_ORE :  to indicate if an Overrun error occur

  Interrupt Source:
  -----------------
     1. USART_IT_TXE :  specifies the interrupt source for the Tx buffer empty interrupt. 
     2. USART_IT_RXNE : specifies the interrupt source for the Rx buffer not empty interrupt.
     3. USART_IT_TC :   specifies the interrupt source for the Transmit complete interrupt. 
     4. USART_IT_IDLE : specifies the interrupt source for the Idle Line interrupt.             
     5. USART_IT_CTS :  specifies the interrupt source for the CTS interrupt. 
     6. USART_IT_LBD :  specifies the interrupt source for the LIN break detection interrupt. 
     7. USART_IT_PE :   specifies the interrupt source for the parity error interrupt. 
     8. USART_IT_ERR :  specifies the interrupt source for the errors interrupt.

@note Some parameters are coded in order to use them as interrupt source or as pending bits.

  In this Mode it is advised to use the following functions:
     - void USART_ITConfig(USART_TypeDef* USARTx, uint16_t USART_IT, FunctionalState NewState);
     - ITStatus USART_GetITStatus(USART_TypeDef* USARTx, uint16_t USART_IT);
     - void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint16_t USART_IT);

pending bits是一种防止中断丢失的机制, 当Mask bits为1的时候中断请求并不会发出, 而是将pending bits置为1, 当mask bits变为0时中断会发出, 然后pending位被清0.

串口通信编程

串口通信就是TX发送和RX接收. 其中TX在绝大多数场合可以直接按字节发送, 需要额外处理的是RX.

串口通信的常见问题

理想的通信方式是发送->等待响应->返回响应, TX之后等待RX响应, 而且响应是完整发送的, 但是实际使用中, RX接收有多种特殊情况

响应太长将缓冲区写满

缓冲区一般会设置为u8[128], 或者u8[256], 对于大部分消息是够的, 对于更大的返回, 如果会造成缓冲溢出的, 建议

  1. 如果是累计的多个返回, 最好改进接收响应完成状态的判断机制, 尽量分段处理
  2. 对于无法分段的特殊情况, 需要保留最新的内容, 将缓冲设计成FIFO的环形结构, 后接收的消息可以覆盖掉最早的内容.

非请求产生的响应

有两种情况, 一种是在设备开机阶段自检和初始化产生的内容, 这些内容可以通过在上位机设置足够长的delay, 把这些内容忽略掉; 第二种就是在正常工作中, 随时出现的通知信息, 这种情况就不能使用发送->等待的处理方式了, 因为RX和TX完全异步. 体现在代码中, 就是TX之后不等待RX的结果. 在TX之后只需要必要的delay, 例如20ms, 以避免和下一条TX连在一起.

在处理接收时, 可以使用IDLE中断, 也可以使用定时器判断.

  • 如果每次响应到达时基本都是完整的(中间的间隔不会超过1个字节的传输耗时), 就可以使用IDLE中断, 这样实现最简单
  • 如果不能满足上一条的条件, 使用IDLE中断就会有问题, 一个响应可能会被拆成好几份, 导致后期处理难度增大. 这时候可以用一个单独的定时器做延时, 判断响应是否接收完整. 延时设置到10ms - 40ms, 对于大部分串口设备的返回都可以完整收集, 又不至于累积太长的响应. 在定时器中断时将缓冲中的整个响应取出处理.

因请求产生的响应, 响应等待时间可能较长(几十毫秒到几百毫秒)

首先, 如果串口设备带回显, 要将回显先关闭. 回显是为了方便手工调试, 但是在程序中, 会引起不必要的麻烦. 因为命令通过TX输出之后RX就会立即收到回显, 但是真正的响应要过一阵子回来, 在程序处理中很可能就把回显当成是响应, 而把真正的响应丢了. 虽然可以将等待响应的定时器设置得长一点, 但是中间的空档期长, 出错的概率也越大. 对响应的接收是通过RXNE中断将接收到的字节写入缓冲实现的, 和前面的处理方式一样, 可以通过定时器延时, 在请求发送后, 设置一个超时时间然后阻塞进程, 在进程中循环判断响应的接收情况. 在串口的中断处理中, 每次收到RXNE中断后都重置并启用定时器延时20ms, 直至超过这个间隔无响应, 在定时器中断中将响应完整状态置位, 在进程中收集到响应.

串口通信常见实现方式

一般通过以下的步骤实现串口通信

1. 实现Buffer工具方法

#ifndef __BUFFER_H_
#define __BUFFER_H_

#include "stm32f10x.h"

typedef struct
{
  u8* buf;
  u16 size;
  u16 front;
  u16 rear;
} BufferTypeDef;

typedef struct
{
  u8 size;
  u8 length;
  u8* data;
} BufferClip;

void Buffer_Reset(BufferTypeDef* buff);
u16  Buffer_Length(BufferTypeDef* buff);
u8   Buffer_Push(BufferTypeDef* buff, u8 data);
u8   Buffer_Pop(BufferTypeDef* buff, u8* data);
u8   Buffer_Pop_All(BufferTypeDef* buff, BufferClip* clip);
void Buffer_Print(BufferTypeDef* buff);
void Buffer_Print_Hex(BufferTypeDef* buff);
void Buffer_Print_All(BufferTypeDef* buff);

void Buffer_Clip_Print(BufferClip* clip);
void Buffer_Clip_Print_Hex(BufferClip* clip);

#endif




#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "buffer.h"

void Buffer_Reset(BufferTypeDef* buff)
{
  buff->front = 0;
  buff->rear = 0;
}

u16 Buffer_Length(BufferTypeDef* buff)
{
  if (buff->rear >= buff->front) {
    return buff->rear - buff->front;
  } else {
    return (buff->size - buff->front) + (buff->rear - 0);
  }
}

u8 Buffer_Push(BufferTypeDef* buff, u8 data)
{
  buff->buf[buff->rear] = data;
  buff->rear++;
  if (buff->rear >= buff->size) {
    buff->rear = 0;
  }
  if (buff->front == buff->rear) {
    buff->front = (buff->front + 1) % buff->size;
    return NULL;
  } else {
    return !NULL;
  }
}

u8 Buffer_Pop(BufferTypeDef* buff, u8* data)
{
  if (buff->front == buff->rear) return NULL;

  *data = buff->buf[buff->front];
  buff->front = (buff->front + 1) % buff->size;
  return !NULL;
}

u8 Buffer_Pop_All(BufferTypeDef* buff, BufferClip* clip)
{
  if (buff->front == buff->rear) return NULL;
  
  memset(clip->data, 0x00, clip->size * sizeof(u8));
  clip->length = 0;
  if (buff->front > buff->rear) {
    while (buff->front < buff->size && clip->length <= clip->size) {
      *(clip->data + clip->length++) = buff->buf[buff->front++];
    }
    if (buff->front == buff->size) {
      buff->front = 0;
    }
  }
  while (buff->front < buff->rear && clip->length <= clip->size) {
    *(clip->data + clip->length++) = buff->buf[buff->front++];
  }
  return !NULL;
}

void Buffer_Print(BufferTypeDef* buff)
{
  printf("BUFF:[%03d,%03d)",buff->front, buff->rear);
  if (buff->front == buff->rear) {
    // print nothing;
  } else if (buff->front < buff->rear) {
    for(int i=buff->front; i < buff->rear; i++) {
      printf("%c", buff->buf[i]);
    }
  } else {
    for(int i = buff->front; i < buff->size; i++) {
      printf("%c", buff->buf[i]);
    }
    for(int i = 0; i < buff->rear; i++) {
      printf("%c", buff->buf[i]);
    }
  }
  printf("\r\n");
}

void Buffer_Print_Hex(BufferTypeDef* buff)
{
  printf("BUFF:[%03d,%03d)",buff->front, buff->rear);
  if (buff->front == buff->rear) {
    // print nothing;
  } else if (buff->front < buff->rear) {
    for(int i=buff->front; i<buff->rear; i++) {
      printf("%02X ", buff->buf[i]);
    }
  } else {
    for(int i=buff->front; i < buff->size; i++) {
      printf("%02X ", buff->buf[i]);
    }
    for(int i=0; i<buff->rear; i++) {
      printf("%02X ", buff->buf[i]);
    }
  }
  printf("\r\n");
}

void Buffer_Print_All(BufferTypeDef* buff)
{
  printf("BUFF:[%d,%d)",buff->front, buff->rear);
  for(int i=0; i < buff->size; i++) {
    printf("%c", buff->buf[i]);
  }
  printf("\r\n");
}

void Buffer_Clip_Print(BufferClip* clip)
{
  printf("CLIP:[%03d]", clip->length);
  for(int i = 0; i < clip->length; i++) {
    printf("%c", clip->data[i]);
  }
  printf("\r\n");
}

void Buffer_Clip_Print_Hex(BufferClip* clip)
{
  printf("CLIP:[%03d]", clip->length);
  for(int i = 0; i < clip->length; i++) {
    printf("%02X ", clip->data[i]);
  }
  printf("\r\n");
}

2. 初始化UART端口: 使能GPIO, UART, NVIC

BufferTypeDef RFID_RX_BUF;
u8 RFID_RX_BUF_BUFF[RFID_BUF_SIZE] = {0x00};

BufferClip RFID_RX_CLIP;
u8 RFID_RX_CLIP_DATA[UINT8_MAX] = {0x00};

u8 RFID_RX_STATE = 0;

void RFID_Init(void)
{
  RFID_RX_BUF.buf = RFID_RX_BUF_BUFF;
  RFID_RX_BUF.size = RFID_BUF_SIZE;
  RFID_RX_CLIP.data = RFID_RX_CLIP_DATA;
  RFID_RX_CLIP.size = UINT8_MAX;

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
  RCC_APB1PeriphClockCmd(RFID_RCC, ENABLE);
  // GPIO for TX
  GPIO_InitTypeDef  GPIO_InitStructure;
  GPIO_InitStructure.GPIO_Pin = RFID_TX_PIN;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_Init(RFID_TX_GPIO, &GPIO_InitStructure);
  // GPIO for RX
  GPIO_InitStructure.GPIO_Pin = RFID_RX_PIN;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_Init(RFID_RX_GPIO, &GPIO_InitStructure); 
  // NVIC
  NVIC_InitTypeDef NVIC_InitStructure;
  NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
  NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority =1;
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
  NVIC_Init(&NVIC_InitStructure);
  // USART
  USART_DeInit(RFID_USART);
  USART_InitTypeDef USART_InitStructure;
  USART_InitStructure.USART_BaudRate = 115200;
  USART_InitStructure.USART_WordLength = USART_WordLength_8b;
  USART_InitStructure.USART_StopBits = USART_StopBits_1;
  USART_InitStructure.USART_Parity = USART_Parity_No;
  USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
  USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
  USART_Init(RFID_USART, &USART_InitStructure);
  USART_ClearFlag(RFID_USART, USART_FLAG_CTS);
  USART_Cmd(RFID_USART, ENABLE);

  USART_ITConfig(RFID_USART, USART_IT_RXNE, ENABLE);
  printf("## RFID Initialized ##\r\n");
}

3. 实现中断处理方法接收消息

一个是串口的RXNE中断, 用于接收每个字节; 另一个是TIMx的计时中断, 用于标记响应接收完成

void USART3_IRQHandler(void)
{
  u8 rev_byte;
  u32 clear;
  if(USART_GetITStatus(USART3, USART_IT_RXNE) != RESET)  {
    rev_byte = USART_ReceiveData(USART3);
    Buffer_Push(&RFID_RX_BUF, rev_byte);
    // Reset the TIM2 counter and enable it
    TIM_SetCounter(TIM2, 0);
    TIM_Cmd(TIM2, ENABLE);
    USART_ClearITPendingBit(USART3, USART_IT_RXNE);
  }
}

void TIM2_IRQHandler(void)
{
  if(TIM_GetITStatus(TIM2, TIM_IT_Update) == SET) {
    printf("RFID_RX_STATE++\r\n");
    RFID_RX_STATE++;
  }
  TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
  TIM_Cmd(TIM2, DISABLE);
}

4. 实现消息发送

下面这个例子, 在收到消息后, 调用 RFID_Handle_Message()处理响应

void RFID_Send_String(const u8* data, u16 length)
{
  printf("RFID CMD: ");
  for (u16 i = 0; i < length; i++) {
    printf("%02X ", *(data + i));
    USART_SendData(RFID_USART, *(data + i));
    while(USART_GetFlagStatus(RFID_USART, USART_FLAG_TXE) == RESET) { // Wait till sent
      ;// Do nothing
    }
  }
  printf(">> Sent\r\n");
}

bool RFID_Send_Cmd(const u8* cmd, u16 length)
{
  RFID_Send_String(cmd, length);
  // Delay 50ms to avoid being joinned by other commands
  Systick_Delay_ms(50);

  u8 waittime = 10;
  while (waittime--) {
    if(RFID_RX_STATE > 0) {
      printf("RFID_RX_STATE %d\r\n", RFID_RX_STATE);
      if (Buffer_Pop_All(&RFID_RX_BUF, &RFID_RX_CLIP) != NULL) {
        Buffer_Clip_Print_Hex(&RFID_RX_CLIP);
        RFID_Handle_Message();
      }
      RFID_RX_STATE--;
    }
    Systick_Delay_ms(50);
  }
  return true;
}

下面这个例子, 直接在参数中指定期望的响应结果, 只需要返回对比的结果

u8 ESP8266_Send_Cmd2(char *cmd, char *ack, char *ack2, u16 waittime)
{
  ESP8266_Send_String((u8 *)cmd);
  Systick_Delay_ms(50);
  // Make sure waittime is set
  if (waittime < 10) waittime = 10;

  while (waittime--) {
    if(ESP_RX_STATE > 0) {
      printf("ESP_RX_STATE %d\r\n", ESP_RX_STATE);
      ESP_RX_STATE--;
      if (Buffer_Pop_All(&ESP_RX_BUF, &ESP_RX_CLIP) != NULL) {
        Buffer_Clip_Print(&ESP_RX_CLIP);
        if(strstr((char *)(ESP_RX_CLIP.data), ack) != NULL) {
          printf("return success\r\n\n");
          return ACK_SUCCESS;
        }
        if (strlen(ack2) > 0) {
          if(strstr((char *)(ESP_RX_CLIP.data), ack2) != NULL) {
            printf("return success\r\n\n");
            return ACK_SUCCESS;
          }
        }
      }
    }
    Systick_Delay_ms(20);
  }
  printf("return defeat\r\n\n");
  return ACK_DEFEAT;
}

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值