connections.sort 方法使用

本文介绍了一个使用Java进行自定义对象排序的例子。通过实现Comparator接口,按照Perform对象的sortId属性进行升序排列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Collections.sort(performers, new Comparator<Performer>() {
				public int compare(Performer o1, Performer o2) {
					return o1.getSortId().compareTo(o2.getSortId());
				}
			});
   此时的比较o1,o2对象之间的属性,按照字母自然顺序比较 比如:a,b,c,d
# Compute centrality measures important degree_centrality = nx.degree_centrality(G) betweenness_centrality = nx.betweenness_centrality(G) closeness_centrality = nx.closeness_centrality(G) eigenvector_centrality = nx.eigenvector_centrality(G, max_iter=1000) # Convert to DataFrame for analysis centrality_df = pd.DataFrame({ "Node": list(G.nodes), "Degree Centrality": [degree_centrality[node] for node in G.nodes], "Betweenness Centrality": [betweenness_centrality[node] for node in G.nodes], "Closeness Centrality": [closeness_centrality[node] for node in G.nodes], "Eigenvector Centrality": [eigenvector_centrality[node] for node in G.nodes] }) # Sort by Degree Centrality centrality_df = centrality_df.sort_values(by="Degree Centrality", ascending=False) # Top influencers by Degree Centrality (most direct connections) top_degree = centrality_df.sort_values(by="Degree Centrality", ascending=False).head(10) # Top influencers by Betweenness Centrality (most control over shortest paths) top_betweenness = centrality_df.sort_values(by="Betweenness Centrality", ascending=False).head(10) # Top influencers by Closeness Centrality (shortest average distance to all nodes) top_closeness = centrality_df.sort_values(by="Closeness Centrality", ascending=False).head(10) # Top influencers by Eigenvector Centrality (importance based on connections to other important nodes) top_eigenvector = centrality_df.sort_values(by="Eigenvector Centrality", ascending=False).head(10) 调整逻辑回归正则化参数(C)哪里改
最新发布
03-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值