派发更新
通过上一节分析我们了解了响应式数据依赖收集过程,收集的目的就是为了当我们修改数据的时候,可以对相关的依赖派发更新,那么这一节我们来详细分析这个过程。
我们先来回顾一下 setter 部分的逻辑:
/**
* Define a reactive property on an Object.
*/
export function defineReactive (
obj: Object,
key: string,
val: any,
customSetter?: ?Function,
shallow?: boolean
) {
const dep = new Dep()
const property = Object.getOwnPropertyDescriptor(obj, key)
if (property && property.configurable === false) {
return
}
// cater for pre-defined getter/setters
const getter = property && property.get
const setter = property && property.set
if ((!getter || setter) && arguments.length === 2) {
val = obj[key]
}
let childOb = !shallow && observe(val)
Object.defineProperty(obj, key, {
enumerable: true,
configurable: true,
// ...
set: function reactiveSetter (newVal) {
const value = getter ? getter.call(obj) : val
/* eslint-disable no-self-compare */
if (newVal === value || (newVal !== newVal && value !== value)) {
return
}
/* eslint-enable no-self-compare */
if (process.env.NODE_ENV !== 'production' && customSetter) {
customSetter()
}
if (setter) {
setter.call(obj, newVal)
} else {
val = newVal
}
childOb = !shallow && observe(newVal)
dep.notify()
}
})
}
setter 的逻辑有 2 个关键的点,一个是 childOb = !shallow && observe(newVal),如果 shallow 为 false 的情况,会对新设置的值变成一个响应式对象;另一个是 dep.notify(),通知所有的订阅者,这是本节的关键,接下来我会带大家完整的分析整个派发更新的过程。
过程分析
当我们在组件中对响应的数据做了修改,就会触发 setter 的逻辑,最后调用 dep.notify() 方法,它是 Dep 的一个实例方法,定义在 src/core/observer/dep.js 中:
class Dep {
// ...
notify () {
// stabilize the subscriber list first
const subs = this.subs.slice()
for (let i = 0, l = subs.length; i < l; i++) {
subs[i].update()
}
}
}
这里的逻辑非常简单,遍历所有的 subs,也就是 Watcher 的实例数组,然后调用每一个 watcher 的 update 方法,它的定义在 src/core/observer/watcher.js中:
/**
* Subscriber interface.
* Will be called when a dependency changes.
*/
update () {
/* istanbul ignore else */
if (this.lazy) {
this.dirty = true
} else if (this.sync) {
this.run()
} else {
queueWatcher(this)
}
}
这里对于 Watcher 的不同状态,会执行不同的逻辑,sync 等状态的分析我会之后抽一小节详细介绍,在一般组件数据更新的场景,会走到最后一个 queueWatcher(this) 的逻辑,queueWatcher 的定义在 src/core/observer/scheduler.js 中:
/**
* Push a watcher into the watcher queue.
* Jobs with duplicate IDs will be skipped unless it's
* pushed when the queue is being flushed.
*/
export function queueWatcher (watcher: Watcher) {
const id = watcher.id
if (has[id] == null) {
has[id] = true
if (!flushing) {
queue.push(watcher)
} else {
// if already flushing, splice the watcher based on its id
// if already past its id, it will be run next immediately.
let i = queue.length - 1
while (i > index && queue[i].id > watcher.id) {
i--
}
queue.splice(i + 1, 0, watcher)
}
// queue the flush
if (!waiting) {
waiting = true
if (process.env.NODE_ENV !== 'production' && !config.async) {
flushSchedulerQueue()
return
}
nextTick(flushSchedulerQueue)
}
}
}
这里引入了一个队列的概念,这也是 Vue 在做派发更新的时候的一个优化的点,它并不会每次数据改变都触发 watcher 的回调,而是把这些 watcher 先添加到一个队列里,然后在 nextTick 后执行 flushSchedulerQueue。
这里有几个细节要注意一下,首先用 has 对象保证同一个 Watcher 只添加一次;接着对 flushing 的判断,else 部分的逻辑稍后我会讲;最后通过 wating 保证对 nextTick(flushSchedulerQueue) 的调用逻辑只有一次,另外 nextTick 的实现我之后会抽一小节专门去讲,目前就可以理解它是在下一个 tick,也就是异步的去执行 flushSchedulerQueue。
接下来我们来看 flushSchedulerQueue 的实现,它的定义在 src/core/observer/scheduler.js 中。
/**
* Flush both queues and run the watchers.
*/
function flushSchedulerQueue () {
currentFlushTimestamp = getNow()
flushing = true
let watcher, id
// Sort queue before flush.
// This ensures that:
// 1. Components are updated from parent to child. (because parent is always
// created before the child)
// 2. A component's user watchers are run before its render watcher (because
// user watchers are created before the render watcher)
// 3. If a component is destroyed during a parent component's watcher run,
// its watchers can be skipped.
queue.sort((a, b) => a.id - b.id)
// do not cache length because more watchers might be pushed
// as we run existing watchers
for (index = 0; index < queue.length; index++) {
watcher = queue[index]
if (watcher.before) {
watcher.before()
}
id = watcher.id
has[id] = null
watcher.run()
// in dev build, check and stop circular updates.
if (process.env.NODE_ENV !== 'production' && has[id] != null) {
circular[id] = (circular[id] || 0) + 1
if (circular[id] > MAX_UPDATE_COUNT) {
warn(
'You may have an infinite update loop ' + (
watcher.user
? `in watcher with expression "${watcher.expression}"`
: `in a component render function.`
),
watcher.vm
)
break
}
}
}
// keep copies of post queues before resetting state
const activatedQueue = activatedChildren.slice()
const updatedQueue = queue.slice()
resetSchedulerState()
// call component updated and activated hooks
callActivatedHooks(activatedQueue)
callUpdatedHooks(updatedQueue)
// devtool hook
/* istanbul ignore if */
if (devtools && config.devtools) {
devtools.emit('flush')
}
}
这里有几个重要的逻辑要梳理一下,对于一些分支逻辑如 keep-alive 组件相关和之前提到过的 updated 钩子函数的执行会略过。
- 队列排序
queue.sort((a, b) => a.id - b. id) 对队列做了从小到大的排序,这么做主要有以下要确保以下几点:
1.组件的更新由父到子;因为父组件的创建过程是先于子的,所以 watcher 的创建也是先父后子,执行顺序也应该保持先父后子。
2.用户的自定义 watcher 要优先于渲染 watcher 执行;因为用户自定义 watcher 是在渲染 watcher 之前创建的。
3.如果一个组件在父组件的 watcher 执行期间被销毁,那么它对应的 watcher 执行都可以被跳过,所以父组件的 watcher 应该先执行。
- 队列遍历
在对 queue 排序后,接着就是要对它做遍历,拿到对应的 watcher,执行 watcher.run()。这里需要注意一个细节,在遍历的时候每次都会对 queue.length 求值,因为在 watcher.run() 的时候,很可能用户会再次添加新的 watcher,这样会再次执行到 queueWatcher,如下:
export function queueWatcher (watcher: Watcher) {
const id = watcher.id
if (has[id] == null) {
has[id] = true
if (!flushing) {
queue.push(watcher)
} else {
// if already flushing, splice the watcher based on its id
// if already past its id, it will be run next immediately.
let i = queue.length - 1
while (i > index && queue[i].id > watcher.id) {
i--
}
queue.splice(i + 1, 0, watcher)
}
// ...
}
}
可以看到,这时候 flushing 为 true,就会执行到 else 的逻辑,然后就会从后往前找,找到第一个待插入 watcher 的 id 比当前队列中 watcher 的 id 大的位置。把 watcher 按照 id的插入到队列中,因此 queue 的长度发送了变化。
- 状态恢复
这个过程就是执行 resetSchedulerState 函数,它的定义在 src/core/observer/scheduler.js 中。
/**
* Reset the scheduler's state.
*/
function resetSchedulerState () {
index = queue.length = activatedChildren.length = 0
has = {}
if (process.env.NODE_ENV !== 'production') {
circular = {}
}
waiting = flushing = false
}
逻辑非常简单,就是把这些控制流程状态的一些变量恢复到初始值,把 watcher 队列清空。
接下来我们继续分析 watcher.run() 的逻辑,它的定义在 src/core/observer/watcher.js 中。
/**
* Scheduler job interface.
* Will be called by the scheduler.
*/
run () {
if (this.active) {
const value = this.get()
if (
value !== this.value ||
// Deep watchers and watchers on Object/Arrays should fire even
// when the value is the same, because the value may
// have mutated.
isObject(value) ||
this.deep
) {
// set new value
const oldValue = this.value
this.value = value
if (this.user) {
try {
this.cb.call(this.vm, value, oldValue)
} catch (e) {
handleError(e, this.vm, `callback for watcher "${this.expression}"`)
}
} else {
this.cb.call(this.vm, value, oldValue)
}
}
}
}
run 函数先通过 this.get() 得到它当前的值,然后做判断,如果满足新旧值不等、新值是对象类型、deep 模式任何一个条件,则执行 watcher 的回调(this.cb),注意回调函数执行的时候会把第一个和第二个参数传入新值 value 和旧值 oldValue,这就是当我们添加自定义 watcher 的时候能在回调函数的参数中拿到新旧值的原因。
那么对于渲染 watcher 而言,它在执行 this.get() 方法求值的时候,会执行 getter 方法:
updateComponent = () => {
vm._update(vm._render(), hydrating)
}
所以这就是当我们去修改组件相关的响应式数据的时候,会触发组件重新渲染的原因,接着就会重新执行 patch 的过程,但它和首次渲染有所不同,之后我们会详细介绍。
nextTick
nextTick 是 Vue 的一个核心实现,在介绍 Vue 的 nextTick 之前,为了方便大家理解,我先简单介绍一下 JS 的运行机制。
JS 运行机制
JS 执行是单线程的,它是基于事件循环的。事件循环大致分为以下几个步骤:
(1)所有同步任务都在主线程上执行,形成一个执行栈(execution context stack)。
(2)主线程之外,还存在一个"任务队列"(task queue)。只要异步任务有了运行结果,就在"任务队列"之中放置一个事件。
(3)一旦"执行栈"中的所有同步任务执行完毕,系统就会读取"任务队列",看看里面有哪些事件。那些对应的异步任务,于是结束等待状态,进入执行栈,开始执行。
(4)主线程不断重复上面的第三步。

主线程的执行过程就是一个 tick,而所有的异步结果都是通过 “任务队列” 来调度被调度。 消息队列中存放的是一个个的任务(task)。 规范中规定 task 分为两大类,分别是 macro task 和 micro task,并且每个 macro task 结束后,都要清空所有的 micro task。
关于 macro task 和 micro task 的概念,这里不会细讲,简单通过一段代码演示他们的执行顺序:
for (macroTask of macroTaskQueue) {
// 1. Handle current MACRO-TASK
handleMacroTask();
// 2. Handle all MICRO-TASK
for (microTask of microTaskQueue) {
handleMicroTask(microTask);
}
}
在浏览器环境中,常见的 macro task 有 setTimeout、MessageChannel、postMessage、setImmediate;常见的 micro task 有 MutationObsever 和 Promise.then
Vue 的实现
在 Vue 源码 2.5+ 后,nextTick 的实现单独有一个 JS 文件来维护它,它的源码并不多,总共也就 100 多行。接下来我们来看一下它的实现,在 src/core/util/next-tick.js 中:
/* @flow */
/* globals MutationObserver */
import { noop } from 'shared/util'
import { handleError } from './error'
import { isIE, isIOS, isNative } from './env'
export let isUsingMicroTask = false
const callbacks = []
let pending = false
function flushCallbacks () {
pending = false
const copies = callbacks.slice(0)
callbacks.length = 0
for (let i = 0; i < copies.length; i++) {
copies[i]()
}
}
// Here we have async deferring wrappers using microtasks.
// In 2.5 we used (macro) tasks (in combination with microtasks).
// However, it has subtle problems when state is changed right before repaint
// (e.g. #6813, out-in transitions).
// Also, using (macro) tasks in event handler would cause some weird behaviors
// that cannot be circumvented (e.g. #7109, #7153, #7546, #7834, #8109).
// So we now use microtasks everywhere, again.
// A major drawback of this tradeoff is that there are some scenarios
// where microtasks have too high a priority and fire in between supposedly
// sequential events (e.g. #4521, #6690, which have workarounds)
// or even between bubbling of the same event (#6566).
let timerFunc
// The nextTick behavior leverages the microtask queue, which can be accessed
// via either native Promise.then or MutationObserver.
// MutationObserver has wider support, however it is seriously bugged in
// UIWebView in iOS >= 9.3.3 when triggered in touch event handlers. It
// completely stops working after triggering a few times... so, if native
// Promise is available, we will use it:
/* istanbul ignore next, $flow-disable-line */
if (typeof Promise !== 'undefined' && isNative(Promise)) {
const p = Promise.resolve()
timerFunc = () => {
p.then(flushCallbacks)
// In problematic UIWebViews, Promise.then doesn't completely break, but
// it can get stuck in a weird state where callbacks are pushed into the
// microtask queue but the queue isn't being flushed, until the browser
// needs to do some other work, e.g. handle a timer. Therefore we can
// "force" the microtask queue to be flushed by adding an empty timer.
if (isIOS) setTimeout(noop)
}
isUsingMicroTask = true
} else if (!isIE && typeof MutationObserver !== 'undefined' && (
isNative(MutationObserver) ||
// PhantomJS and iOS 7.x
MutationObserver.toString() === '[object MutationObserverConstructor]'
)) {
// Use MutationObserver where native Promise is not available,
// e.g. PhantomJS, iOS7, Android 4.4
// (#6466 MutationObserver is unreliable in IE11)
let counter = 1
const observer = new MutationObserver(flushCallbacks)
const textNode = document.createTextNode(String(counter))
observer.observe(textNode, {
characterData: true
})
timerFunc = () => {
counter = (counter + 1) % 2
textNode.data = String(counter)
}
isUsingMicroTask = true
} else if (typeof setImmediate !== 'undefined' && isNative(setImmediate)) {
// Fallback to setImmediate.
// Technically it leverages the (macro) task queue,
// but it is still a better choice than setTimeout.
timerFunc = () => {
setImmediate(flushCallbacks)
}
} else {
// Fallback to setTimeout.
timerFunc = () => {
setTimeout(flushCallbacks, 0)
}
}
export function nextTick (cb?: Function, ctx?: Object) {
let _resolve
callbacks.push(() => {
if (cb) {
try {
cb.call(ctx)
} catch (e) {
handleError(e, ctx, 'nextTick')
}
} else if (_resolve) {
_resolve(ctx)
}
})
if (!pending) {
pending = true
timerFunc()
}
// $flow-disable-line
if (!cb && typeof Promise !== 'undefined') {
return new Promise(resolve => {
_resolve = resolve
})
}
}
在next-tick.js中存在三个重要的变量callbacks:用来存储所有要执行的回调函数。pending:用来标志是否正在执行回调函数。timerFunc:用来出发执行回调函数,接下来我们看一下flushCallbacks函数:
function flushCallbacks () {
pending = false
const copies = callbacks.slice(0)
callbacks.length = 0
for (let i = 0; i < copies.length; i++) {
copies[i]()
}
}
此函数就是用来执行callbacks中的回调函数,接下来就是以触发方式给timerFunc进行赋值,是异步执行的核心函数
- 先判断是否原生支持promise,如果支持,则利用promise来触发执行回调函数;
- 否则,如果支持MutationObserver,则实例化一个观察者对象,观察文本节点发生变化时,触发执行所有回调函数。
- 如果都不支持,则利用setTimeout设置延时为0
最后nextTick函数接受两个参数,回调函数cb和环境上下文ctx, 如果没有提供回调函数则返回一个promise对象。这里使用 callbacks 而不是直接在 nextTick 中执行回调函数的原因是保证在同一个 tick 内多次执行 nextTick,不会开启多个异步任务,而把这些异步任务都压成一个同步任务,在下一个 tick 执行完毕。
检测变化的注意事项
通过前面的分析,我们对响应式数据对象以及它的 getter 和 setter 部分做了了解,但是对于一些特殊情况是需要注意的,接下来我们就从源码的角度来看 Vue 是如何处理这些特殊情况的。
对象添加属性
对于使用 Object.defineProperty 实现响应式的对象,当我们去给这个对象添加一个新的属性的时候,是不能够触发它的 setter 的,比如:
var vm = new Vue({
data:{
a:1
}
})
// vm.b 是非响应的
vm.b = 2
但是添加新属性的场景我们在平时开发中会经常遇到,那么 Vue 为了解决这个问题,定义了一个全局 API Vue.set 方法,它在 src/core/global-api/index.js中初始化:
Vue.set = set
这个 set 方法的定义在 src/core/observer/index.js 中:
/**
* Set a property on an object. Adds the new property and
* triggers change notification if the property doesn't
* already exist.
*/
export function set (target: Array<any> | Object, key: any, val: any): any {
if (process.env.NODE_ENV !== 'production' &&
(isUndef(target) || isPrimitive(target))
) {
warn(`Cannot set reactive property on undefined, null, or primitive value: ${(target: any)}`)
}
if (Array.isArray(target) && isValidArrayIndex(key)) {
target.length = Math.max(target.length, key)
target.splice(key, 1, val)
return val
}
if (key in target && !(key in Object.prototype)) {
target[key] = val
return val
}
const ob = (target: any).__ob__
if (target._isVue || (ob && ob.vmCount)) {
process.env.NODE_ENV !== 'production' && warn(
'Avoid adding reactive properties to a Vue instance or its root $data ' +
'at runtime - declare it upfront in the data option.'
)
return val
}
if (!ob) {
target[key] = val
return val
}
defineReactive(ob.value, key, val)
ob.dep.notify()
return val
}
set 方法接收 3个参数,target 可能是数组或者是普通对象,key 代表的是数组的下标或者是对象的键值,val 代表添加的值。首先判断如果 target 是数组且 key 是一个合法的下标,则之前通过 splice 去添加进数组然后返回,这里的 splice 其实已经不仅仅是原生数组的 splice 了,稍后我会详细介绍数组的逻辑。接着又判断 key 已经存在于 target 中,则直接赋值返回,因为这样的变化是可以观测到了。接着再获取到 target.__ob__ 并赋值给 ob,之前分析过它是在 Observer 的构造函数执行的时候初始化的,表示 Observer 的一个实例,如果它不存在,则说明 target 不是一个响应式的对象,则直接赋值并返回。最后通过 defineReactive(ob.value, key, val) 把新添加的属性变成响应式对象,然后再通过 ob.dep.notify() 手动的触发依赖通知,还记得我们在给对象添加 getter 的时候有这么一段逻辑:
export function defineReactive (
obj: Object,
key: string,
val: any,
customSetter?: ?Function,
shallow?: boolean
) {
// ...
let childOb = !shallow && observe(val)
Object.defineProperty(obj, key, {
enumerable: true,
configurable: true,
get: function reactiveGetter () {
const value = getter ? getter.call(obj) : val
if (Dep.target) {
dep.depend()
if (childOb) {
childOb.dep.depend()
if (Array.isArray(value)) {
dependArray(value)
}
}
}
return value
},
// ...
})
}
在 getter 过程中判断了 childOb,并调用了 childOb.dep.depend() 收集了依赖,这就是为什么执行 Vue.set 的时候通过 ob.dep.notify() 能够通知到 watcher,从而让添加新的属性到对象也可以检测到变化。这里如果 value 是个数组,那么就通过 dependArray 把数组每个元素也去做依赖收集。
数组
接着说一下数组的情况,Vue 也是不能检测到以下变动的数组:
1.当你利用索引直接设置一个项时,例如:vm.items[indexOfItem] = newValue
2.当你修改数组的长度时,例如:vm.items.length = newLength
对于第一种情况,可以使用:Vue.set(example1.items, indexOfItem, newValue);而对于第二种情况,可以使用 vm.items.splice(newLength)。
我们刚才也分析到,对于 Vue.set 的实现,当 target 是数组的时候,也是通过 target.splice(key, 1, val) 来添加的,那么这里的 splice 到底有什么黑魔法,能让添加的对象变成响应式的呢。
其实之前我们也分析过,在通过 observe 方法去观察对象的时候会实例化 Observer,在它的构造函数中是专门对数组做了处理,它的定义在 src/core/observer/index.js 中。
export class Observer {
constructor (value: any) {
this.value = value
this.dep = new Dep()
this.vmCount = 0
def(value, '__ob__', this)
if (Array.isArray(value)) {
const augment = hasProto
? protoAugment
: copyAugment
augment(value, arrayMethods, arrayKeys)
this.observeArray(value)
} else {
// ...
}
}
}
这里我们只需要关注 value 是 Array 的情况,首先获取 augment,这里的 hasProto 实际上就是判断对象中是否存在 __proto__,如果存在则 augment 指向 protoAugment, 否则指向 copyAugment,来看一下这两个函数的定义:
/**
* Augment an target Object or Array by intercepting
* the prototype chain using __proto__
*/
function protoAugment (target, src: Object, keys: any) {
/* eslint-disable no-proto */
target.__proto__ = src
/* eslint-enable no-proto */
}
/**
* Augment an target Object or Array by defining
* hidden properties.
*/
/* istanbul ignore next */
function copyAugment (target: Object, src: Object, keys: Array<string>) {
for (let i = 0, l = keys.length; i < l; i++) {
const key = keys[i]
def(target, key, src[key])
}
}
protoAugment 方法是直接把 target.__proto__ 原型直接修改为 src,而 copyAugment 方法是遍历 keys,通过 def,也就是 Object.defineProperty 去定义它自身的属性值。对于大部分现代浏览器都会走到 protoAugment,那么它实际上就把 value 的原型指向了 arrayMethods,arrayMethods 的定义在 src/core/observer/array.js 中:
import { def } from '../util/index'
const arrayProto = Array.prototype
export const arrayMethods = Object.create(arrayProto)
const methodsToPatch = [
'push',
'pop',
'shift',
'unshift',
'splice',
'sort',
'reverse'
]
/**
* Intercept mutating methods and emit events
*/
methodsToPatch.forEach(function (method) {
// cache original method
const original = arrayProto[method]
def(arrayMethods, method, function mutator (...args) {
const result = original.apply(this, args)
const ob = this.__ob__
let inserted
switch (method) {
case 'push':
case 'unshift':
inserted = args
break
case 'splice':
inserted = args.slice(2)
break
}
if (inserted) ob.observeArray(inserted)
// notify change
ob.dep.notify()
return result
})
})
可以看到,arrayMethods 首先继承了 Array,然后对数组中所有能改变数组自身的方法,如 push、pop 等这些方法进行重写。重写后的方法会先执行它们本身原有的逻辑,并对能增加数组长度的 3 个方法 push、unshift、splice 方法做了判断,获取到插入的值,然后把新添加的值变成一个响应式对象,并且再调用 ob.dep.notify() 手动触发依赖通知,这就很好地解释了之前的示例中调用 vm.items.splice(newLength) 方法可以检测到变化。
861

被折叠的 条评论
为什么被折叠?



