OpenJudge 013:Zipper

本文介绍了一种算法,用于判断第三个字符串是否能由前两个字符串的字符按原顺序组合而成。通过动态规划方法,设定状态dp[i][j]表示s1前i字符与s2前j字符能否构成d前i+j字符,实现对给定字符串的有效验证。

013:Zipper

总时间限制: 1000ms 内存限制: 65536kB
描述
Given three strings, you are to determine whether the third string can be formed by combining the characters in the first two strings. The first two strings can be mixed arbitrarily, but each must stay in its original order.

For example, consider forming “tcraete” from “cat” and “tree”:

String A: cat
String B: tree
String C: tcraete

As you can see, we can form the third string by alternating characters from the two strings. As a second example, consider forming “catrtee” from “cat” and “tree”:

String A: cat
String B: tree
String C: catrtee

Finally, notice that it is impossible to form “cttaree” from “cat” and “tree”.

输入
The first line of input contains a single positive integer from 1 through 1000. It represents the number of data sets to follow. The processing for each data set is identical. The data sets appear on the following lines, one data set per line.

For each data set, the line of input consists of three strings, separated by a single space. All strings are composed of upper and lower case letters only. The length of the third string is always the sum of the lengths of the first two strings. The first two strings will have lengths between 1 and 200 characters, inclusive.

输出
For each data set, print:

Data set n: yes

if the third string can be formed from the first two, or

Data set n: no

if it cannot. Of course n should be replaced by the data set number. See the sample output below for an example.

样例输入

3
cat tree tcraete
cat tree catrtee
cat tree cttaree

样例输出

Data set 1: yes
Data set 2: yes
Data set 3: no

思想
本题由于要按顺序,而且两字符串长度之和恰好等于最后一个字符串,就要求任意字符串中第i个以前的i-1个字符一定参与了组成,否则无法完成组合,因此可以将状态设为dp[i][j]表示s1中前i个字符和s2中前j个字符可以构成d中前i+j个字符串,若要看dp[i][j]能否完成,则对s1要看dp[i-1][j]是否可以,且d[i+j-1]=s1[i-1];对s2要看dp[i][j-1]是否可以,且s2[j-1]=d[i+j-1];边界条件是酒dp[0][0]一定能组成为true,故依次扫描就录下结果最终的dp[len1][len2]就是结果。(注意下标代表的意义)

#include<iostream>
#include<vector>
#include<string>
using namespace std;

bool check(const string& s1, const string& s2, const string& d) {
    int len1 = s1.length(), len2 = s2.length();
    vector<vector<bool>> dp(len1 + 1, vector<bool>(len2 + 1, false));
//dp[i][j]表示s1中前i个字符和s2中前j个字符可以构成d中前i+j个字符串
    dp[0][0] = true;//0个元素一定能构成
    for (int i = 0; i <= len1; ++i)
        for (int j = 0; j <= len2; ++j) {
            if (i >= 1 && dp[i - 1][j] && d[i + j - 1] == s1[i - 1])
                dp[i][j] = true;
            if (j >= 1 && dp[i][j - 1] && d[i + j - 1] == s2[j - 1])
                dp[i][j] = true;
        }
    return dp[len1][len2];
}

int main() {
    int N = 0;
    cin >> N;
    int cnt = 1;
    while (N--) {
        string src1, src2, dst;
        cin >> src1 >> src2 >> dst;
        if (check(src1,src2,dst))
            cout << "Data set " << cnt++ << ": yes" << endl;
        else
            cout << "Data set " << cnt++ << ": no" << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值