Codeforces 588 C Duff and Weight Lifting【思维】

C. Duff and Weight Lifting

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Recently, Duff has been practicing weight lifting. As a hard practice, Malek gave her a task. He gave her a sequence of weights. Weight of i-th of them is 2wi pounds. In each step, Duff can lift some of the remaining weights and throw them away. She does this until there's no more weight left. Malek asked her to minimize the number of steps.

Duff is a competitive programming fan. That's why in each step, she can only lift and throw away a sequence of weights 2a1, ..., 2ak if and only if there exists a non-negative integer x such that 2a1 + 2a2 + ... + 2ak = 2x, i. e. the sum of those numbers is a power of two.

Duff is a competitive programming fan, but not a programmer. That's why she asked for your help. Help her minimize the number of steps.

Input

The first line of input contains integer n (1 ≤ n ≤ 106), the number of weights.

The second line contains n integers w1, ..., wn separated by spaces (0 ≤ wi ≤ 106 for each 1 ≤ i ≤ n), the powers of two forming the weights values.

Output

Print the minimum number of steps in a single line.

Examples

Input

5
1 1 2 3 3

Output

2

Input

4
0 1 2 3

Output

4

Note

In the first sample case: One optimal way would be to throw away the first three in the first step and the rest in the second step. Also, it's not possible to do it in one step because their sum is not a power of two.

In the second sample case: The only optimal way is to throw away one weight in each step. It's not possible to do it in less than 4 steps because there's no subset of weights with more than one weight and sum equal to a power of two.

 

题目大意:有n个数,每个数都表示2^a【i】的数,每一次选取可以从n个数中挑取任意个数的数字,必须让其和是2的幂数才行,问最少选取几次才能将所有数都取走。


思路:


1、首先明确这一点,在二进制中,想要进位一定是同位相加才能进位。那么给出的数又是2的幂数,那么明显只有a【i】==a【j】的时候,才有进位合并的可能。


2、那么设定一个数组vis【i】表示2^i有多少个。那么我们从0开始扫,令vis【i】=vis【i】%2;vis【i+1】=vis【i】/2,即可,最后ans=累加vis【i】;


Ac代码:

#include<stdio.h>
#include<string.h>
using namespace std;
int vis[1000500];
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        memset(vis,0,sizeof(vis));
        for(int i=0;i<n;i++)
        {
            int x;
            scanf("%d",&x);
            vis[x]++;
        }
        for(int i=0;i<1000400;i++)
        {
            vis[i+1]+=vis[i]/2;
            vis[i]%=2;
        }
        int output=0;
        for(int i=0;i<1000400;i++)
        {
            output+=vis[i];
        }
        printf("%d\n",output);
    }
}




### 解题思路 #### 问题描述 Codeforces 1678C - Tokitsukaze and Strange Inequality 是一道关于排列组合与前缀和的应用问题。给定一个长度为 \( n \) 的排列数组 \( p \),需要统计满足条件 \( a < b < c < d \) 并且 \( p_a < p_c \) 同时 \( p_b > p_d \) 的四元组数量。 --- #### 核心思想 由于数据规模较小 (\( n \leq 5000 \)),可以直接通过枚举的方式解决问题。为了降低时间复杂度,引入 **前缀和** 技术来加速计算过程[^3]。 具体来说: - 枚举变量 \( a \) 和 \( c \),固定它们之后,目标是快速找到符合条件的 \( b \) 和 \( d \)。 - 使用预处理好的前缀和数组 `num` 来高效查询某个范围内满足特定关系的数量。 - 定义辅助数组 `sum` 表示对于固定的区间范围内的某些约束条件下的累积计数结果。 --- #### 实现细节 ##### 步骤一:构建前缀和数组 `num` 定义二维数组 `num[i][j]`,其中 `num[i][j]` 表示在序列的前 \( i \) 项中,有多少个元素大于 \( j \)。 该数组可以通过如下方式初始化: ```python n = len(p) max_val = max(p) # 初始化 num 数组 num = [[0] * (max_val + 2) for _ in range(n + 1)] for i in range(1, n + 1): for j in range(max_val + 1, -1, -1): # 反向遍历以保持正确性 if p[i - 1] > j: num[i][j] = num[i - 1][j] + 1 else: num[i][j] = num[i - 1][j] ``` 上述代码的时间复杂度为 \( O(n \cdot m) \),其中 \( m \) 是数组中的最大值。 --- ##### 步骤二:定义并填充辅助数组 `sum` 定义另一个二维数组 `sum[i][j]`,它表示当 \( a=i \), \( c=j \) 时,在区间 \([a+1, c-1]\) 中满足 \( p[b] > p[d] \) 的总贡献次数。 利用动态规划的思想逐步更新此数组: ```python sum_ = [[0] * (n + 1) for _ in range(n + 1)] bucket = [0] * (max_val + 1) for l in range(n - 1, 0, -1): bucket[p[l]] += 1 for r in range(l + 2, n + 1): sum_[l][r] = sum_[l][r - 1] + (num[r - 1][p[r - 1]] - num[l][p[r - 1]]) ``` 这里的关键在于如何有效累加当前区间的合法贡献,并借助之前已经计算的结果减少重复运算。 --- ##### 步骤三:枚举所有可能的 \( a \) 和 \( c \) 最后一步是对所有的 \( a \) 和 \( c \) 进行双重循环,并将对应位置上的 `sum[a][c]` 加入最终答案中: ```python result = 0 for a in range(1, n - 2): for c in range(a + 2, n): result += sum_[a][c] print(result) ``` 整个算法的核心部分即完成以上三个阶段的操作即可实现高效的解决方案。 --- ### 总结 本题主要考察的是对多重嵌套结构的有效简化以及合理运用前缀和技巧的能力。通过巧妙设计的数据结构能够显著提升程序运行效率至可接受水平。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值