hdu 5546 Ancient Go【dfs】【思维】

Ancient Go

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 604    Accepted Submission(s): 221


Problem Description
Yu Zhou likes to play Go with Su Lu. From the historical research, we found that there are much difference on the rules between ancient go and modern go.

Here is the rules for ancient go they were playing:

The game is played on a 8×8 cell board, the chess can be put on the intersection of the board lines, so there are 9×9 different positions to put the chess.
Yu Zhou always takes the black and Su Lu the white. They put the chess onto the game board alternately.
The chess of the same color makes connected components(connected by the board lines), for each of the components, if it's not connected with any of the empty cells, this component dies and will be removed from the game board.
When one of the player makes his move, check the opponent's components first. After removing the dead opponent's components, check with the player's components and remove the dead components.
One day, Yu Zhou was playing ancient go with Su Lu at home. It's Yu Zhou's move now. But they had to go for an emergency military action. Little Qiao looked at the game board and would like to know whether Yu Zhou has a move to kill at least one of Su Lu's chess.
 


Input
The first line of the input gives the number of test cases, T(1T100). T test cases follow. Test cases are separated by an empty line. Each test case consist of 9 lines represent the game board. Each line consists of 9 characters. Each character represents a cell on the game board. . represents an empty cell. x represents a cell with black chess which owned by Yu Zhou. o represents a cell with white chess which owned by Su Lu.
 


Output
For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is Can kill in one move!!! if Yu Zhou has a move to kill at least one of Su Lu's components. Can not kill in one move!!! otherwise.
 


Sample Input
2 .......xo ......... ......... ..x...... .xox....x .o.o...xo ..o...... .....xxxo ....xooo. ......ox. .......o. ...o..... ..o.o.... ...o..... ......... .......o. ...x..... ........o
 


Sample Output
Case #1: Can kill in one move!!! Case #2: Can not kill in one move!!!
Hint
In the first test case, Yu Zhou has 4 different ways to kill Su Lu's component. In the second test case, there is no way to kill Su Lu's component.


开始做题并不是那么谨慎,觉得题目并不是很难,所以WA了几发,一会再强调一下坑点。

首先我们在这里说明一下题意:

给你OX两种棋子,假设你是X,你要只用一个棋子就能围上一个O,那么就算是can kill,否则can not。

这样就算作围上了:

.x.

xox.

.x.

思路:地图辣么小,直接暴力枚举每一个O,看看他周围有几个。就行了,如果只有一个。那么我用X填补上这个。就算作可以one move kill了被~,否则如果有两个以上的。那就说明这个O不能被one kill了被~。当然如果遇到了联通块O,那么我们就无限延展联通块并且找。就行了被~

这里有个坑(连通块的坑)如果是这样的一个图:

这里哪个唯一的一个。容易被忽略而统计两次,所以在dfs核心代码的地方我做了这样的一个小技巧:

char a[15][15];
int vis[15][15];
int fx[4]={0,0,1,-1};
int fy[4]={1,-1,0,0};
int dfs(int x,int y)
{
    int sum=0;
    vis[x][y]=1;
    for(int i=0;i<4;i++)
    {
        int xx=x+fx[i];
        int yy=y+fy[i];
        if(xx>=0&&xx<9&&yy>=0&&yy<9&&vis[xx][yy]==0)
        {
            if(a[xx][yy]=='.')
            {
                sum++;
                vis[xx][yy]=1;//在这里,我们把走过的。也标记上,就不会统计多次了~。当然这么做同时也要在每一次枚举o的时候都要memset一下vis。
                //printf("%d %d\n",xx,yy);
            }
            if(a[xx][yy]=='x')
            continue;
            if(a[xx][yy]=='o')
            {
               sum+=dfs(xx,yy);
            }
        }
    }
    return sum;
}

思路清晰了,我们这里就直接上完整的AC代码了:

 

#include<stdio.h>
#include<string.h>
using namespace std;
char a[15][15];
int vis[15][15];
int fx[4]={0,0,1,-1};
int fy[4]={1,-1,0,0};
int dfs(int x,int y)
{
    int sum=0;
    vis[x][y]=1;
    for(int i=0;i<4;i++)
    {
        int xx=x+fx[i];
        int yy=y+fy[i];
        if(xx>=0&&xx<9&&yy>=0&&yy<9&&vis[xx][yy]==0)
        {
            if(a[xx][yy]=='.')
            {
                sum++;
                vis[xx][yy]=1;
                //printf("%d %d\n",xx,yy);
            }
            if(a[xx][yy]=='x')
            continue;
            if(a[xx][yy]=='o')
            {
               sum+=dfs(xx,yy);
            }
        }
    }
    return sum;
}
int main()
{
    int kase=0;
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(vis,0,sizeof(vis));
        for(int i=0;i<9;i++)
        {
            scanf("%s",a[i]);
        }
        int ok=0;
        for(int i=0;i<9;i++)
        {
            for(int j=0;j<9;j++)
            {
                if(a[i][j]=='o')
                {
                    memset(vis,0,sizeof(vis));
                    int cont=dfs(i,j);
                    //printf("%d\n",cont);
                    if(cont==1)
                    {
                         printf("Case #%d: Can kill in one move!!!\n",++kase);
                         //printf("%d %d yes\n",i,j);
                         ok=1;
                    }
                    //printf("%d %d yes\n",i,j);
                }
                if(ok==1)break;
            }
            if(ok==1)break;
        }
        if(ok==0)
        {
            printf("Case #%d: Can not kill in one move!!!\n",++kase);
        }
    }
}
/*
.........
.........
.........
.........
...xxx...
..xooox..
..xxo....
....x....
.........
*/





【最优潮流】直流最优潮流(OPF)课设(Matlab代码实现)内容概要:本文档主要围绕“直流最优潮流(OPF)课设”的Matlab代码实现展开,属于电力系统优化领域的教学与科研实践内容。文档介绍了通过Matlab进行电力系统最优潮流计算的基本原理与编程实现方法,重点聚焦于直流最优潮流模型的构建与求解过程,适用于课程设计或科研入门实践。文中提及使用YALMIP等优化工具包进行建模,并提供了相关资源下载链接,便于读者复现与学习。此外,文档还列举了大量与电力系统、智能优化算法、机器学习、路径规划等相关的Matlab仿真案例,体现出其服务于科研仿真辅导的综合性平台性质。; 适合人群:电气工程、自动化、电力系统及相关专业的本科生、研究生,以及从事电力系统优化、智能算法应用研究的科研人员。; 使用场景及目标:①掌握直流最优潮流的基本原理与Matlab实现方法;②完成课程设计或科研项目中的电力系统优化任务;③借助提供的丰富案例资源,拓展在智能优化、状态估计、微电网调度等方向的研究思路与技术手段。; 阅读建议:建议读者结合文档中提供的网盘资源,下载完整代码与工具包,边学习理论边动手实践。重点关注YALMIP工具的使用方法,并通过复现文中提到的多个案例,加深对电力系统优化问题建模与求解的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值