operator new 和 operator delete

本文详细解释了C++中使用自定义operatornew和operatordelete进行内存管理的方法,包括如何通过多参数形式来实现异常捕获后的内存释放,以及在继承体系中如何正确处理这些操作符以避免内存泄漏。

来源: http://topic.youkuaiyun.com/u/20081204/11/5848283a-c1b9-4efc-8a26-0878aed14a5c.html


C++里允许用户通过自定义operator new的方式来更改new表达式的行为,这给了程序员定制内存管理方案的自由。但是享受这种自由的时候必须遵守一定的规范,具体可以参见《Effective C++ 2nd》的相关条款。本文补充解释一些特别容易引起误解的问题。


  operator new和operator delete都有其正规形式(normal signature):

void* operator new(size_t size);
void operator delete(void *p);
void operator delete(void *p,size_t size);

  普通的new与delete表达式在分配与释放内存时调用的就是它们。一般来说operator delete(void*)的优先级比operator delete(void*,size_t)要高,这意味着如果在同一空间(scope)定义了这两种形式的delete,拥有单一参数者优先被编译器选择。这一点在VC7.1中得到验证,不知其它编译器如何? 

  除了上面的正规形式外,我们还可以定义拥有更多参数的operator new和operator delete,只要保证前者的返回值和第一个参数分别是void*和size_t类型,而后者的分别是void和void*就行了。比如:

void* operator new(size_t size,const char* szFile,int nLine);
void operator delete(void *p,const char*,int);

  表达式new("xxx",20) SomeClass实际上就是告诉编译器调用上面的多参数operator new来分配内存。但是不要依此类推出 delete("xxx",20) pObj,这是非法的。那么怎么才能调用到这个多参数的operator delete呢?实话告诉你,你没有这个权利。呵呵,别吃惊,容我慢慢解释。当两个operator new和operator delete有相等的参数个数,并且除了第一个参数之外其余参数的类型依次完全相同之时,我们称它们为一对匹配的operator new和operator delete。按照这个标准,上面两位就是匹配的一对了。在我们使用 SomeClass *pObj = new("xxx",20) SomeClass 于堆中构建一个对象的过程中,如果在执行SomeClass的构造函数时发生了异常,并且这个异常被捕获了,那么C++的异常处理机制就会自动用与被使用的operator new匹配的operator delete来释放内存(补充一点:在operator new中抛出异常不会导致这样的动作,因为系统认为这标志着内存分配失败)。编译期间编译器按照以下顺序寻找匹配者:首先在被构建对象类的类域中寻找,然后到父类域中,最后到全局域,此过程中一旦找到即停止搜寻并用它来生成正确的内存释放代码,如果没有找到,当发生上述异常情况时将不会有代码用来释放分配的内存,这就造成内存泄漏了。而如果一切正常,delete pObj 则总是会去调用operator delete的正规形式。现在明白了吧,多参数的operator delete不是给我们而是给系统调用的,它平常默默无闻,但在最危急的关头却能挺身而出,保证程序的健壮性。为了有个感性的认识,让我们看看下面的代码(试验环境是VC7.1):

#include <malloc.h>

struct Base
{
  Base()
  {
  throw int(3);
  }

  ~Base() {}

  void* operator new( size_t nSize, const char*,int)
  {
  void* p = malloc( nSize );

  return p;
  } 

  void operator delete( void *p)
  {
  free(p);
  }

  void operator delete( void* p,const char*,int)
  {
  free( p );
  }
};

#define NULL 0
#define new new(__FILE__, __LINE__)

int main( void )
{
  Base* p = NULL;

  try
  {
  p = new Base;

  delete p;
  }
  catch(...)
  {
  }

  return 0;
}

  跟踪执行会发现:程序在 p = new Base 处抛出一个异常后马上跳去执行operator delete(void*,const char*,int)。注释掉Base构造函数中的throw int(3)重来一遍,则new成功,然后执行delete p,这时实际调用的是Base::operator delete(void*)。以上试验结果符合我们的预期。注意,operator new和operator delete是可以被继承和重定义的,那接下来就看看它们在继承体系中的表现。引进一个Base的派生类(代码加在#define NULL 0的前面):

struct Son : public Base
{
  Son()
  {
  }

  void* operator new( size_t nSize, const char*,int)
  {
  // class Son

  void* p = malloc( nSize );
  return p;
  }

  void operator delete( void *p)
  {
  // class Son
  free(p);
  }

  void operator delete( void* p,const char*,int)
  {
  // class Son
  free( p );
  }
};
  然后将main函数中的p = new Base改成p = new Son并且取消对Base()中的throw int(3)的注释,跟踪执行,发现这回new表达式调用的是Son重定义的operator new,抛出异常后也迅速进入了正确的operator delete,即Son重定义的多参数版本。一切都如所料,是吗?呵呵,别急着下结论,让我们把抛异常的语句注释掉再跑一次吧。很明显,有些不对劲。这次delete p没有如我们所愿去调用Son::operator delete(void*),而是找到了在Base中定义的版本。怎么回事?我愿意留一分钟让好奇的你仔细想想。

  找到答案了吗?没错,罪魁祸首就是那愚蠢的Base析构函数声明。作为一个领导着派生类的基类,析构函数竟然不声明成virtual函数,这简直就是渎职。赶紧纠正,在~Base()前加上一个神圣的virtual,rebuild and run.....。谢天谢地,世界终于完美了。

  可能你会疑惑,在没有给基类析构函数加virtual之前,当发生异常时C++为什么知道正确地调用派生类定义的多参数operator delete,而不是基类的?其实很简单,new一个对象时必须提供此对象的确切类型,所以编译器能够在编译期确定new表达式抛出异常后应该调用哪个类定义的operator delete。对于正常的delete p来说,如果p被声明为非基类类型的指针,编译器就会在编译时决定调用这种声明类型定义的operator delete(静态绑定),而如果p是某种基类类型指针,编译器就会聪明地把到底调用哪个类定义的operator delete留待运行期决定(动态绑定)。那么编译器如何判断p是否是基类指针呢?实际上它的根据就是p的声明类型中定义的析构函数,只有在析构函数是虚拟的情况下p才被看成基类指针。这就可以解释上面碰到的问题。当时p被声明为Base*,程序中它实际指向一个Son对象,但我们并没有把~Base()声明为虚拟的,所以编译器大胆地帮我们做了静态绑定,也即生成调用Base::operator delete(void*)的代码。不过千万不要以为所有编译器都会这样做,以上分析仅仅是基于VC7.1在本次试验中的表现。事实上在C++标准中,经由一个基类指针删除一个派生类对象,而此基类却有一个非虚拟的析构函数,结果未定义。明白了吧老兄,编译器在这种情况下没有生成引爆你电脑的代码已经算是相当客气与负责了。现在你该能够体会Scott Meyers劝你"总是让base class拥有virtual detructor"时的苦心吧。

  至于数组版本的operator new[]和opeator delete[],情况一样。朋友们可以自己做试验确认一下。

  最后要指出的是,试验代码中对operator new和operator delete的实现相当不规范,负责任的做法仍然请大家参考Scott Meyers的著作




内容概要:本文设计了一种基于PLC的全自动洗衣机控制系统内容概要:本文设计了一种,采用三菱FX基于PLC的全自动洗衣机控制系统,采用3U-32MT型PLC作为三菱FX3U核心控制器,替代传统继-32MT电器控制方式,提升了型PLC作为系统的稳定性与自动化核心控制器,替代水平。系统具备传统继电器控制方式高/低水,实现洗衣机工作位选择、柔过程的自动化控制/标准洗衣模式切换。系统具备高、暂停加衣、低水位选择、手动脱水及、标准两种蜂鸣提示等功能洗衣模式,支持,通过GX Works2软件编写梯形图程序,实现进洗衣过程中暂停添加水、洗涤、排水衣物,并增加了手动脱水功能、脱水等工序蜂鸣器提示的自动循环控制功能,提升了使用的,并引入MCGS组便捷性与灵活性态软件实现人机交互界面监控。控制系统通过GX。硬件设计包括 Works2软件进行主电路、PLC接梯形图编程线与关键元,完成了启动、进水器件选型,软件、正反转洗涤部分完成I/O分配、排水、脱、逻辑流程规划水等工序的逻辑及各功能模块梯设计,并实现了大形图编程。循环与小循环的嵌; 适合人群:自动化套控制流程。此外、电气工程及相关,还利用MCGS组态软件构建专业本科学生,具备PL了人机交互C基础知识梯界面,实现对洗衣机形图编程能力的运行状态的监控与操作。整体设计涵盖了初级工程技术人员。硬件选型、; 使用场景及目标:I/O分配、电路接线、程序逻辑设计及组①掌握PLC在态监控等多个方面家电自动化控制中的应用方法;②学习,体现了PLC在工业自动化控制中的高效全自动洗衣机控制系统的性与可靠性。;软硬件设计流程 适合人群:电气;③实践工程、自动化及相关MCGS组态软件与PLC的专业的本科生、初级通信与联调工程技术人员以及从事;④完成PLC控制系统开发毕业设计或工业的学习者;具备控制类项目开发参考一定PLC基础知识。; 阅读梯形图建议:建议结合三菱编程能力的人员GX Works2仿真更为适宜。; 使用场景及目标:①应用于环境与MCGS组态平台进行程序高校毕业设计或调试与运行验证课程项目,帮助学生掌握PLC控制系统的设计,重点关注I/O分配逻辑、梯形图与实现方法;②为工业自动化领域互锁机制及循环控制结构的设计中类似家电控制系统的开发提供参考方案;③思路,深入理解PL通过实际案例理解C在实际工程项目PLC在电机中的应用全过程。控制、时间循环、互锁保护、手动干预等方面的应用逻辑。; 阅读建议:建议结合三菱GX Works2编程软件MCGS组态软件同步实践,重点理解梯形图程序中各环节的时序逻辑与互锁机制,关注I/O分配与硬件接线的对应关系,并尝试在仿真环境中调试程序以加深对全自动洗衣机控制流程的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值