leetcode Course Schedule

本文探讨了如何判断在存在先修课程约束的情况下,是否能够完成所有课程的问题。通过使用拓扑排序的方法,每次找到并移除入度为0的顶点及其指向的边,直至无法再移除或所有课程都被遍历。

There are a total of n courses you have to take, labeled from 0 to n - 1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

For example:

2, [[1,0]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.

2, [[1,0],[0,1]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.

click to show more hints.

       拓扑排序问题,每次找到一条入度为0的点,删去该点指向其他节点的边,直到所有点遍历完毕,代码:
public boolean canFinish(int numCourses, int[][] prerequisites) {
    Set[] outset=new Set[numCourses];
    for(int i=0;i<outset.length;i++)
        outset[i]=new HashSet<>();
    for(int[] edge:prerequisites){
        outset[edge[1]].add(edge[0]);
    }
    int[] insize=new int[numCourses];
    for(int i=0;i<numCourses;i++){
        Set temp=outset[i];
        Iterator<Integer> iter=temp.iterator();
        while(iter.hasNext()){
            insize[iter.next()]++;
        }
    }
    for(int i=0;i<numCourses;i++){
        int j=0;
        for(;j<numCourses;j++){
            if(insize[j]==0) break;
        }
        if(j==numCourses) return false;
        insize[j]=-1;
        Set st=outset[j];
        Iterator<Integer> it=st.iterator();
        while(it.hasNext()){
            insize[it.next()]--;
        }
    }
    return  true;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值