Tokenizer(分词器)
算法介绍:
Tokenization将文本划分为独立个体(通常为单词)。下面的例子展示了如何把句子划分为单词。
RegexTokenizer基于正则表达式提供更多的划分选项。默认情况下,参数“pattern”为划分文本的分隔符。或者,用户可以指定参数“gaps”来指明正则“patten”表示“tokens”而不是分隔符,这样来为分词结果找到所有可能匹配的情况。
示例调用:
Scala:
- import org.apache.spark.ml.feature.{RegexTokenizer, Tokenizer}
- val sentenceDataFrame = spark.createDataFrame(Seq(
- (0, "Hi I heard about Spark"),
- (1, "I wish Java could use case classes"),
- (2, "Logistic,regression,models,are,neat")
- )).toDF("label", "sentence")
- val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
- val regexTokenizer = new RegexTokenizer()
- .setInputCol("sentence")
- .setOutputCol("words")
- .setPattern("\\W") // alternatively .setPattern("\\w+").setGaps(false)
- val tokenized = tokenizer.transform(sentenceDataFrame)
- tokenized.select("words", "label").take(3).foreach(println)
- val regexTokenized = regexTokenizer.transform(sentenceDataFrame)
- regexTokenized.select("words", "label").take(3).foreach(println)
Java:
- import java.util.Arrays;
- import java.util.List;
- import org.apache.spark.ml.feature.RegexTokenizer;
- import org.apache.spark.ml.feature.Tokenizer;
- import org.apache.spark.sql.Dataset;
- import org.apache.spark.sql.Row;
- import org.apache.spark.sql.RowFactory;
- import org.apache.spark.sql.types.DataTypes;
- import org.apache.spark.sql.types.Metadata;
- import org.apache.spark.sql.types.StructField;
- import org.apache.spark.sql.types.StructType;
- List<Row> data = Arrays.asList(
- RowFactory.create(0, "Hi I heard about Spark"),
- RowFactory.create(1, "I wish Java could use case classes"),
- RowFactory.create(2, "Logistic,regression,models,are,neat")
- );
- StructType schema = new StructType(new StructField[]{
- new StructField("label", DataTypes.IntegerType, false, Metadata.empty()),
- new StructField("sentence", DataTypes.StringType, false, Metadata.empty())
- });
- Dataset<Row> sentenceDataFrame = spark.createDataFrame(data, schema);
- Tokenizer tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words");
- Dataset<Row> wordsDataFrame = tokenizer.transform(sentenceDataFrame);
- for (Row r : wordsDataFrame.select("words", "label").takeAsList(3)) {
- java.util.List<String> words = r.getList(0);
- for (String word : words) System.out.print(word + " ");
- System.out.println();
- }
- RegexTokenizer regexTokenizer = new RegexTokenizer()
- .setInputCol("sentence")
- .setOutputCol("words")
- .setPattern("\\W"); // alternatively .setPattern("\\w+").setGaps(false);
Python:
- from pyspark.ml.feature import Tokenizer, RegexTokenizer
- sentenceDataFrame = spark.createDataFrame([
- (0, "Hi I heard about Spark"),
- (1, "I wish Java could use case classes"),
- (2, "Logistic,regression,models,are,neat")
- ], ["label", "sentence"])
- tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
- wordsDataFrame = tokenizer.transform(sentenceDataFrame)
- for words_label in wordsDataFrame.select("words", "label").take(3):
- print(words_label)
- regexTokenizer = RegexTokenizer(inputCol="sentence", outputCol="words", pattern="\\W")
- # alternatively, pattern="\\w+", gaps(False)
StopWordsRemover
算法介绍:
停用词为在文档中频繁出现,但未承载太多意义的词语,他们不应该被包含在算法输入中。
StopWordsRemover的输入为一系列字符串(如分词器输出),输出中删除了所有停用词。停用词表由stopWords参数提供。一些语言的默认停用词表可以通过StopWordsRemover.loadDefaultStopWords(language)调用。布尔参数caseSensitive指明是否区分大小写(默认为否)。
示例:
假设我们有如下DataFrame,有id和raw两列:
id | raw
----|----------
0 | [I,saw, the, red, baloon]
1 |[Mary, had, a, little, lamb]
通过对raw列调用StopWordsRemover,我们可以得到筛选出的结果列如下:
id | raw | filtered
----|-----------------------------|--------------------
0 | [I,saw, the, red, baloon] | [saw, red, baloon]
1 |[Mary, had, a, little, lamb]|[Mary, little, lamb]
其中,“I”, “the”, “had”以及“a”被移除。
示例调用:
Scala:
- import org.apache.spark.ml.feature.StopWordsRemover
- val remover = new StopWordsRemover()
- .setInputCol("raw")
- .setOutputCol("filtered")
- val dataSet = spark.createDataFrame(Seq(
- (0, Seq("I", "saw", "the", "red", "baloon")),
- (1, Seq("Mary", "had", "a", "little", "lamb"))
- )).toDF("id", "raw")
- remover.transform(dataSet).show()
Java:
- import java.util.Arrays;
- import java.util.List;
- import org.apache.spark.ml.feature.StopWordsRemover;
- import org.apache.spark.sql.Dataset;
- import org.apache.spark.sql.Row;
- import org.apache.spark.sql.RowFactory;
- import org.apache.spark.sql.types.DataTypes;
- import org.apache.spark.sql.types.Metadata;
- import org.apache.spark.sql.types.StructField;
- import org.apache.spark.sql.types.StructType;
- StopWordsRemover remover = new StopWordsRemover()
- .setInputCol("raw")
- .setOutputCol("filtered");
- List<Row> data = Arrays.asList(
- RowFactory.create(Arrays.asList("I", "saw", "the", "red", "baloon")),
- RowFactory.create(Arrays.asList("Mary", "had", "a", "little", "lamb"))
- );
- StructType schema = new StructType(new StructField[]{
- new StructField(
- "raw", DataTypes.createArrayType(DataTypes.StringType), false, Metadata.empty())
- });
- Dataset<Row> dataset = spark.createDataFrame(data, schema);
- remover.transform(dataset).show();
Python:
- from pyspark.ml.feature import StopWordsRemover
- sentenceData = spark.createDataFrame([
- (0, ["I", "saw", "the", "red", "baloon"]),
- (1, ["Mary", "had", "a", "little", "lamb"])
- ], ["label", "raw"])
- remover = StopWordsRemover(inputCol="raw", outputCol="filtered")
- remover.transform(sentenceData).show(truncate=False)
n-gram
算法介绍:
一个n-gram是一个长度为整数n的字序列。NGram可以用来将输入转换为n-gram。
NGram的输入为一系列字符串(如分词器输出)。参数n决定每个n-gram包含的对象个数。结果包含一系列n-gram,其中每个n-gram代表一个空格分割的n个连续字符。如果输入少于n个字符串,将没有输出结果。
示例调用:
Scala:
- import org.apache.spark.ml.feature.NGram
- val wordDataFrame = spark.createDataFrame(Seq(
- (0, Array("Hi", "I", "heard", "about", "Spark")),
- (1, Array("I", "wish", "Java", "could", "use", "case", "classes")),
- (2, Array("Logistic", "regression", "models", "are", "neat"))
- )).toDF("label", "words")
- val ngram = new NGram().setInputCol("words").setOutputCol("ngrams")
- val ngramDataFrame = ngram.transform(wordDataFrame)
- ngramDataFrame.take(3).map(_.getAs[Stream[String]]("ngrams").toList).foreach(println)
Java:
- import java.util.Arrays;
- import java.util.List;
- import org.apache.spark.ml.feature.NGram;
- import org.apache.spark.sql.Row;
- import org.apache.spark.sql.RowFactory;
- import org.apache.spark.sql.types.DataTypes;
- import org.apache.spark.sql.types.Metadata;
- import org.apache.spark.sql.types.StructField;
- import org.apache.spark.sql.types.StructType;
- List<Row> data = Arrays.asList(
- RowFactory.create(0.0, Arrays.asList("Hi", "I", "heard", "about", "Spark")),
- RowFactory.create(1.0, Arrays.asList("I", "wish", "Java", "could", "use", "case", "classes")),
- RowFactory.create(2.0, Arrays.asList("Logistic", "regression", "models", "are", "neat"))
- );
- StructType schema = new StructType(new StructField[]{
- new StructField("label", DataTypes.DoubleType, false, Metadata.empty()),
- new StructField(
- "words", DataTypes.createArrayType(DataTypes.StringType), false, Metadata.empty())
- });
- Dataset<Row> wordDataFrame = spark.createDataFrame(data, schema);
- NGram ngramTransformer = new NGram().setInputCol("words").setOutputCol("ngrams");
- Dataset<Row> ngramDataFrame = ngramTransformer.transform(wordDataFrame);
- for (Row r : ngramDataFrame.select("ngrams", "label").takeAsList(3)) {
- java.util.List<String> ngrams = r.getList(0);
- for (String ngram : ngrams) System.out.print(ngram + " --- ");
- System.out.println();
- }
Python:
- from pyspark.ml.feature import NGram
- wordDataFrame = spark.createDataFrame([
- (0, ["Hi", "I", "heard", "about", "Spark"]),
- (1, ["I", "wish", "Java", "could", "use", "case", "classes"]),
- (2, ["Logistic", "regression", "models", "are", "neat"])
- ], ["label", "words"])
- ngram = NGram(inputCol="words", outputCol="ngrams")
- ngramDataFrame = ngram.transform(wordDataFrame)
- for ngrams_label in ngramDataFrame.select("ngrams", "label").take(3):
- print(ngrams_label)
Binarizer
算法介绍:
二值化是根据阀值将连续数值特征转换为0-1特征的过程。
Binarizer参数有输入、输出以及阀值。特征值大于阀值将映射为1.0,特征值小于等于阀值将映射为0.0。
示例调用:
Scala:
- import org.apache.spark.ml.feature.Binarizer
- val data = Array((0, 0.1), (1, 0.8), (2, 0.2))
- val dataFrame = spark.createDataFrame(data).toDF("label", "feature")
- val binarizer: Binarizer = new Binarizer()
- .setInputCol("feature")
- .setOutputCol("binarized_feature")
- .setThreshold(0.5)
- val binarizedDataFrame = binarizer.transform(dataFrame)
- val binarizedFeatures = binarizedDataFrame.select("binarized_feature")
- binarizedFeatures.collect().foreach(println)
Java:
- import java.util.Arrays;
- import java.util.List;
- import org.apache.spark.ml.feature.Binarizer;
- import org.apache.spark.sql.Row;
- import org.apache.spark.sql.RowFactory;
- import org.apache.spark.sql.types.DataTypes;
- import org.apache.spark.sql.types.Metadata;
- import org.apache.spark.sql.types.StructField;
- import org.apache.spark.sql.types.StructType;
- List<Row> data = Arrays.asList(
- RowFactory.create(0, 0.1),
- RowFactory.create(1, 0.8),
- RowFactory.create(2, 0.2)
- );
- StructType schema = new StructType(new StructField[]{
- new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
- new StructField("feature", DataTypes.DoubleType, false, Metadata.empty())
- });
- Dataset<Row> continuousDataFrame = spark.createDataFrame(data, schema);
- Binarizer binarizer = new Binarizer()
- .setInputCol("feature")
- .setOutputCol("binarized_feature")
- .setThreshold(0.5);
- Dataset<Row> binarizedDataFrame = binarizer.transform(continuousDataFrame);
- Dataset<Row> binarizedFeatures = binarizedDataFrame.select("binarized_feature");
- for (Row r : binarizedFeatures.collectAsList()) {
- Double binarized_value = r.getDouble(0);
- System.out.println(binarized_value);
- }
Python:
- from pyspark.ml.feature import Binarizer
- continuousDataFrame = spark.createDataFrame([
- (0, 0.1),
- (1, 0.8),
- (2, 0.2)
- ], ["label", "feature"])
- binarizer = Binarizer(threshold=0.5, inputCol="feature", outputCol="binarized_feature")
- binarizedDataFrame = binarizer.transform(continuousDataFrame)
- binarizedFeatures = binarizedDataFrame.select("binarized_feature")
- for binarized_feature, in binarizedFeatures.collect():
- print(binarized_feature)
PCA
算法介绍:
主成分分析是一种统计学方法,它使用正交转换从一系列可能相关的变量中提取线性无关变量集,提取出的变量集中的元素称为主成分。使用PCA方法可以对变量集合进行降维。下面的示例将会展示如何将5维特征向量转换为3维主成分向量。
示例调用:
Scala:
- import org.apache.spark.ml.feature.PCA
- import org.apache.spark.ml.linalg.Vectors
- val data = Array(
- Vectors.sparse(5, Seq((1, 1.0), (3, 7.0))),
- Vectors.dense(2.0, 0.0, 3.0, 4.0, 5.0),
- Vectors.dense(4.0, 0.0, 0.0, 6.0, 7.0)
- )
- val df = spark.createDataFrame(data.map(Tuple1.apply)).toDF("features")
- val pca = new PCA()
- .setInputCol("features")
- .setOutputCol("pcaFeatures")
- .setK(3)
- .fit(df)
- val pcaDF = pca.transform(df)
- val result = pcaDF.select("pcaFeatures")
- result.show()
Java:
- import java.util.Arrays;
- import java.util.List;
- import org.apache.spark.ml.feature.PCA;
- import org.apache.spark.ml.feature.PCAModel;
- import org.apache.spark.ml.linalg.VectorUDT;
- import org.apache.spark.ml.linalg.Vectors;
- import org.apache.spark.sql.Dataset;
- import org.apache.spark.sql.Row;
- import org.apache.spark.sql.RowFactory;
- import org.apache.spark.sql.types.Metadata;
- import org.apache.spark.sql.types.StructField;
- import org.apache.spark.sql.types.StructType;
- List<Row> data = Arrays.asList(
- RowFactory.create(Vectors.sparse(5, new int[]{1, 3}, new double[]{1.0, 7.0})),
- RowFactory.create(Vectors.dense(2.0, 0.0, 3.0, 4.0, 5.0)),
- RowFactory.create(Vectors.dense(4.0, 0.0, 0.0, 6.0, 7.0))
- );
- StructType schema = new StructType(new StructField[]{
- new StructField("features", new VectorUDT(), false, Metadata.empty()),
- });
- Dataset<Row> df = spark.createDataFrame(data, schema);
- PCAModel pca = new PCA()
- .setInputCol("features")
- .setOutputCol("pcaFeatures")
- .setK(3)
- .fit(df);
- Dataset<Row> result = pca.transform(df).select("pcaFeatures");
- result.show();
Python:
- from pyspark.ml.feature import PCA
- from pyspark.ml.linalg import Vectors
- data = [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),),
- (Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),),
- (Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]
- df = spark.createDataFrame(data, ["features"])
- pca = PCA(k=3, inputCol="features", outputCol="pcaFeatures")
- model = pca.fit(df)
- result = model.transform(df).select("pcaFeatures")
- result.show(truncate=False)
PolynomialExpansion
算法介绍:
多项式扩展通过产生n维组合将原始特征将特征扩展到多项式空间。下面的示例会介绍如何将你的特征集拓展到3维多项式空间。
示例调用:
Scala:
- import org.apache.spark.ml.feature.PolynomialExpansion
- import org.apache.spark.ml.linalg.Vectors
- val data = Array(
- Vectors.dense(-2.0, 2.3),
- Vectors.dense(0.0, 0.0),
- Vectors.dense(0.6, -1.1)
- )
- val df = spark.createDataFrame(data.map(Tuple1.apply)).toDF("features")
- val polynomialExpansion = new PolynomialExpansion()
- .setInputCol("features")
- .setOutputCol("polyFeatures")
- .setDegree(3)
- val polyDF = polynomialExpansion.transform(df)
- polyDF.select("polyFeatures").take(3).foreach(println)
Java:
- import java.util.Arrays;
- import java.util.List;
- import org.apache.spark.ml.feature.PolynomialExpansion;
- import org.apache.spark.ml.linalg.VectorUDT;
- import org.apache.spark.ml.linalg.Vectors;
- import org.apache.spark.sql.Dataset;
- import org.apache.spark.sql.Row;
- import org.apache.spark.sql.RowFactory;
- import org.apache.spark.sql.types.Metadata;
- import org.apache.spark.sql.types.StructField;
- import org.apache.spark.sql.types.StructType;
- PolynomialExpansion polyExpansion = new PolynomialExpansion()
- .setInputCol("features")
- .setOutputCol("polyFeatures")
- .setDegree(3);
- List<Row> data = Arrays.asList(
- RowFactory.create(Vectors.dense(-2.0, 2.3)),
- RowFactory.create(Vectors.dense(0.0, 0.0)),
- RowFactory.create(Vectors.dense(0.6, -1.1))
- );
- StructType schema = new StructType(new StructField[]{
- new StructField("features", new VectorUDT(), false, Metadata.empty()),
- });
- Dataset<Row> df = spark.createDataFrame(data, schema);
- Dataset<Row> polyDF = polyExpansion.transform(df);
- List<Row> rows = polyDF.select("polyFeatures").takeAsList(3);
- for (Row r : rows) {
- System.out.println(r.get(0));
- }
Python:
- from pyspark.ml.feature import PolynomialExpansion
- from pyspark.ml.linalg import Vectors
- df = spark\
- .createDataFrame([(Vectors.dense([-2.0, 2.3]),),
- (Vectors.dense([0.0, 0.0]),),
- (Vectors.dense([0.6, -1.1]),)],
- ["features"])
- px = PolynomialExpansion(degree=3, inputCol="features", outputCol="polyFeatures")
- polyDF = px.transform(df)
- for expanded in polyDF.select("polyFeatures").take(3):
- print(expanded)
Discrete Cosine Transform(DCT)
算法介绍:
离散余弦变换是与傅里叶变换相关的一种变换,它类似于离散傅立叶变换但是只使用实数。离散余弦变换相当于一个长度大概是它两倍的离散傅里叶变换,这个离散傅里叶变换是对一个实偶函数进行的(因为一个实偶函数的傅里叶变换仍然是一个实偶函数)。离散余弦变换,经常被信号处理和图像处理使用,用于对信号和图像(包括静止图像和运动图像)进行有损数据压缩。
示例调用:
Scala:
- import org.apache.spark.ml.feature.DCT
- import org.apache.spark.ml.linalg.Vectors
- val data = Seq(
- Vectors.dense(0.0, 1.0, -2.0, 3.0),
- Vectors.dense(-1.0, 2.0, 4.0, -7.0),
- Vectors.dense(14.0, -2.0, -5.0, 1.0))
- val df = spark.createDataFrame(data.map(Tuple1.apply)).toDF("features")
- val dct = new DCT()
- .setInputCol("features")
- .setOutputCol("featuresDCT")
- .setInverse(false)
- val dctDf = dct.transform(df)
- dctDf.select("featuresDCT").show(3)
Java:
- import java.util.Arrays;
- import java.util.List;
- import org.apache.spark.ml.feature.DCT;
- import org.apache.spark.ml.linalg.VectorUDT;
- import org.apache.spark.ml.linalg.Vectors;
- import org.apache.spark.sql.Row;
- import org.apache.spark.sql.RowFactory;
- import org.apache.spark.sql.types.Metadata;
- import org.apache.spark.sql.types.StructField;
- import org.apache.spark.sql.types.StructType;
- List<Row> data = Arrays.asList(
- RowFactory.create(Vectors.dense(0.0, 1.0, -2.0, 3.0)),
- RowFactory.create(Vectors.dense(-1.0, 2.0, 4.0, -7.0)),
- RowFactory.create(Vectors.dense(14.0, -2.0, -5.0, 1.0))
- );
- StructType schema = new StructType(new StructField[]{
- new StructField("features", new VectorUDT(), false, Metadata.empty()),
- });
- Dataset<Row> df = spark.createDataFrame(data, schema);
- DCT dct = new DCT()
- .setInputCol("features")
- .setOutputCol("featuresDCT")
- .setInverse(false);
- Dataset<Row> dctDf = dct.transform(df);
- dctDf.select("featuresDCT").show(3);
Python:
- from pyspark.ml.feature import DCT
- from pyspark.ml.linalg import Vectors
- df = spark.createDataFrame([
- (Vectors.dense([0.0, 1.0, -2.0, 3.0]),),
- (Vectors.dense([-1.0, 2.0, 4.0, -7.0]),),
- (Vectors.dense([14.0, -2.0, -5.0, 1.0]),)], ["features"])
- dct = DCT(inverse=False, inputCol="features", outputCol="featuresDCT")
- dctDf = dct.transform(df)
- for dcts in dctDf.select("featuresDCT").take(3):
- print(dcts)
STringindexer
算法介绍:
StringIndexer将字符串标签编码为标签指标。指标取值范围为[0,numLabels],按照标签出现频率排序,所以出现最频繁的标签其指标为0。如果输入列为数值型,我们先将之映射到字符串然后再对字符串的值进行指标。如果下游的管道节点需要使用字符串-指标标签,则必须将输入和钻还为字符串-指标列名。
示例:
假设我们有DataFrame数据含有id和category两列:
id | category
----|----------
0 | a
1 | b
2 | c
3 | a
4 | a
5 | c
category是有3种取值的字符串列,使用StringIndexer进行转换后我们可以得到如下输出:
id | category |categoryIndex
----|----------|---------------
0 |a | 0.0
1 |b | 2.0
2 |c | 1.0
3 |a | 0.0
4 |a | 0.0
5 |c | 1.0
另外,如果在转换新数据时出现了在训练中未出现的标签,StringIndexer将会报错(默认值)或者跳过未出现的标签实例。
示例调用:
Scala:
- import org.apache.spark.ml.feature.StringIndexer
- val df = spark.createDataFrame(
- Seq((0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c"))
- ).toDF("id", "category")
- val indexer = new StringIndexer()
- .setInputCol("category")
- .setOutputCol("categoryIndex")
- val indexed = indexer.fit(df).transform(df)
- indexed.show()
Java:
- import java.util.Arrays;
- import java.util.List;
- import org.apache.spark.ml.feature.StringIndexer;
- import org.apache.spark.sql.Dataset;
- import org.apache.spark.sql.Row;
- import org.apache.spark.sql.RowFactory;
- import org.apache.spark.sql.types.StructField;
- import org.apache.spark.sql.types.StructType;
- import static org.apache.spark.sql.types.DataTypes.*;
- List<Row> data = Arrays.asList(
- RowFactory.create(0, "a"),
- RowFactory.create(1, "b"),
- RowFactory.create(2, "c"),
- RowFactory.create(3, "a"),
- RowFactory.create(4, "a"),
- RowFactory.create(5, "c")
- );
- StructType schema = new StructType(new StructField[]{
- createStructField("id", IntegerType, false),
- createStructField("category", StringType, false)
- });
- Dataset<Row> df = spark.createDataFrame(data, schema);
- StringIndexer indexer = new StringIndexer()
- .setInputCol("category")
- .setOutputCol("categoryIndex");
- Dataset<Row> indexed = indexer.fit(df).transform(df);
- indexed.show();
Python:
- from pyspark.ml.feature import StringIndexer
- df = spark.createDataFrame(
- [(0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c")],
- ["id", "category"])
- indexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
- indexed = indexer.fit(df).transform(df)
- indexed.show()
IndexToString
算法介绍:
与StringIndexer对应,IndexToString将指标标签映射回原始字符串标签。一个常用的场景是先通过StringIndexer产生指标标签,然后使用指标标签进行训练,最后再对预测结果使用IndexToString来获取其原始的标签字符串。
示例:
假设我们有如下的DataFrame包含id和categoryIndex两列:
id | categoryIndex
----|---------------
0 | 0.0
1 | 2.0
2 | 1.0
3 | 0.0
4 | 0.0
5 | 1.0
使用originalCategory我们可以获取其原始的标签字符串如下:
id | categoryIndex| originalCategory
----|---------------|-----------------
0 |0.0 | a
1 |2.0 | b
2 |1.0 | c
3 |0.0 | a
4 |0.0 | a
5 |1.0 | c
示例调用:
Scala:
- import org.apache.spark.ml.feature.{IndexToString, StringIndexer}
- val df = spark.createDataFrame(Seq(
- (0, "a"),
- (1, "b"),
- (2, "c"),
- (3, "a"),
- (4, "a"),
- (5, "c")
- )).toDF("id", "category")
- val indexer = new StringIndexer()
- .setInputCol("category")
- .setOutputCol("categoryIndex")
- .fit(df)
- val indexed = indexer.transform(df)
- val converter = new IndexToString()
- .setInputCol("categoryIndex")
- .setOutputCol("originalCategory")
- val converted = converter.transform(indexed)
- converted.select("id", "originalCategory").show()
Java:
- import java.util.Arrays;
- import java.util.List;
- import org.apache.spark.ml.feature.IndexToString;
- import org.apache.spark.ml.feature.StringIndexer;
- import org.apache.spark.ml.feature.StringIndexerModel;
- import org.apache.spark.sql.Row;
- import org.apache.spark.sql.RowFactory;
- import org.apache.spark.sql.types.DataTypes;
- import org.apache.spark.sql.types.Metadata;
- import org.apache.spark.sql.types.StructField;
- import org.apache.spark.sql.types.StructType;
- List<Row> data = Arrays.asList(
- RowFactory.create(0, "a"),
- RowFactory.create(1, "b"),
- RowFactory.create(2, "c"),
- RowFactory.create(3, "a"),
- RowFactory.create(4, "a"),
- RowFactory.create(5, "c")
- );
- StructType schema = new StructType(new StructField[]{
- new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
- new StructField("category", DataTypes.StringType, false, Metadata.empty())
- });
- Dataset<Row> df = spark.createDataFrame(data, schema);
- StringIndexerModel indexer = new StringIndexer()
- .setInputCol("category")
- .setOutputCol("categoryIndex")
- .fit(df);
- Dataset<Row> indexed = indexer.transform(df);
- IndexToString converter = new IndexToString()
- .setInputCol("categoryIndex")
- .setOutputCol("originalCategory");
- Dataset<Row> converted = converter.transform(indexed);
- converted.select("id", "originalCategory").show();
Python:
- from pyspark.ml.feature import IndexToString, StringIndexer
- df = spark.createDataFrame(
- [(0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c")],
- ["id", "category"])
- stringIndexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
- model = stringIndexer.fit(df)
- indexed = model.transform(df)
- converter = IndexToString(inputCol="categoryIndex", outputCol="originalCategory")
- converted = converter.transform(indexed)
- converted.select("id", "originalCategory").show()
OneHotEncoder
算法介绍:
独热编码将标签指标映射为二值向量,其中最多一个单值。这种编码被用于将种类特征使用到需要连续特征的算法,如逻辑回归等。
示例调用:
Scala:
- import org.apache.spark.ml.feature.{OneHotEncoder, StringIndexer}
- val df = spark.createDataFrame(Seq(
- (0, "a"),
- (1, "b"),
- (2, "c"),
- (3, "a"),
- (4, "a"),
- (5, "c")
- )).toDF("id", "category")
- val indexer = new StringIndexer()
- .setInputCol("category")
- .setOutputCol("categoryIndex")
- .fit(df)
- val indexed = indexer.transform(df)
- val encoder = new OneHotEncoder()
- .setInputCol("categoryIndex")
- .setOutputCol("categoryVec")
- val encoded = encoder.transform(indexed)
- encoded.select("id", "categoryVec").show()
Java:
- import java.util.Arrays;
- import java.util.List;
- import org.apache.spark.ml.feature.OneHotEncoder;
- import org.apache.spark.ml.feature.StringIndexer;
- import org.apache.spark.ml.feature.StringIndexerModel;
- import org.apache.spark.sql.Dataset;
- import org.apache.spark.sql.Row;
- import org.apache.spark.sql.RowFactory;
- import org.apache.spark.sql.types.DataTypes;
- import org.apache.spark.sql.types.Metadata;
- import org.apache.spark.sql.types.StructField;
- import org.apache.spark.sql.types.StructType;
- List<Row> data = Arrays.asList(
- RowFactory.create(0, "a"),
- RowFactory.create(1, "b"),
- RowFactory.create(2, "c"),
- RowFactory.create(3, "a"),
- RowFactory.create(4, "a"),
- RowFactory.create(5, "c")
- );
- StructType schema = new StructType(new StructField[]{
- new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
- new StructField("category", DataTypes.StringType, false, Metadata.empty())
- });
- Dataset<Row> df = spark.createDataFrame(data, schema);
- StringIndexerModel indexer = new StringIndexer()
- .setInputCol("category")
- .setOutputCol("categoryIndex")
- .fit(df);
- Dataset<Row> indexed = indexer.transform(df);
- OneHotEncoder encoder = new OneHotEncoder()
- .setInputCol("categoryIndex")
- .setOutputCol("categoryVec");
- Dataset<Row> encoded = encoder.transform(indexed);
- encoded.select("id", "categoryVec").show();
Python:
- from pyspark.ml.feature import OneHotEncoder, StringIndexer
- df = spark.createDataFrame([
- (0, "a"),
- (1, "b"),
- (2, "c"),
- (3, "a"),
- (4, "a"),
- (5, "c")
- ], ["id", "category"])
- stringIndexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
- model = stringIndexer.fit(df)
- indexed = model.transform(df)
- encoder = OneHotEncoder(dropLast=False, inputCol="categoryIndex", outputCol="categoryVec")
- encoded = encoder.transform(indexed)
- encoded.select("id", "categoryVec").show()
文章出处:https://blog.youkuaiyun.com/liulingyuan6/article/details/53397780?locationNum=3&fps=1