A Simple Ordered Hashtable

This class implements an ordered hashtable, which maps keys to values. Any non-null object can be used as a key or as a value.

Because in the MIDP API there is no support for the Java Collection API which provides a rich set of collection classes, SimpleOrderedHashtable.java implements, as the name implies, a simple ordered Hashtable. You can use this SimpleOrderedHashtable as a container of objects that exposes both hashed and chronologically ordered sequential access capabilities.

This ordered Hashtable is called simple because internally it uses the Legacy collection classes, a Vector to maintain the element's order and a Hashtable to provide hashing capabilities. Because Hashtable and Vector grow differently, the implementation of com.j2medeveloper.util.SimpleOrderedHashtable is not the most efficient one, but may be good enough for your needs.

As with typical Hashtables, to successfully store and retrieve objects from a hashtable, the objects used as keys must implement the hashCode method and the equals method.

There are many instances where you would like to use an ordered Hashtable, for example, to keep your user interface elements ordered, or to keep ordered items from a database or backend while keeping rapid access via Hashtable keys, or to store and access any value you want to access using a key.

The Code - SimpleOrderedHashtable.java

/* -----------------------------------------------------------------------------
 * SimpleOrderedHashtable.java
 * Author: C. Enrique Ortiz
 * Copyright (c) 2004-2005 C. Enrique Ortiz <eortiz@j2medeveloper.com>
 *
 * SimpleOrderedHashtable.java implements a simple Hashtable that is
 * chronologically ordered.
 *
 * This is free software; you can redistribute it and/or modify it under
 * the terms of the GNU Lesser General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option) any
 * later version.
 *
 * Usage & redistributions of source code must retain the above copyright notice.
 *
 * This software is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should get a copy of the GNU Lesser General Public License from
 * the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
 * Boston, MA  02111-1307  USA
 * -----------------------------------------------------------------------------
 */

package com.j2medeveloper.util;

import java.util.Vector;
import java.util.Enumeration;
import java.util.Hashtable;

/**
 *  Implements an Ordered Hashtable, with elements in
 *    chronological order (i.e. insertion order)
 */
public class SimpleOrderedHashtable {

    private Vector    orderedKeys;
    private Hashtable hashTable;

    /**
     *  Constructor, creates an SimpleOrderedHashtable.
     */
    public SimpleOrderedHashtable() {
        orderedKeys = new Vector();
        hashTable = new Hashtable();
    }

    /**
     *  Constructor, creates an SimpleOrderedHashtable.
     *  @param initialCapacity is the initial size for the container.
     */
    public SimpleOrderedHashtable(int initialCapacity) {
        orderedKeys = new Vector(initialCapacity);
        hashTable = new Hashtable(initialCapacity);
    }

    /**
     *  Maps the specified key to the specified value in this SimpleOrderedHashtable.
     *  The value can be retrieved by calling the get method with a key that is
     *  equal to the original key.
     *  @param key is the hashtable key.
     *  @param value is the value.
     *  @return the previous value of the specified key in this
     *  SimpleOrderedHashtable, or null if it did not have one.
     */
    synchronized public Object put(Object key, Object value) {
        int i = orderedKeys.indexOf(key);
        if (i == -1)  {
            //  Add new name/value pair.
            orderedKeys.addElement(key); // insert (append) to the end of the list
        } else {
            //  Replace name/value pair.
            orderedKeys.setElementAt(key, i);
        }
        return hashTable.put(key, value);
    }

    /**
     *  Returns the value to which the specified key is mapped in this
     *  hashtable.
     *  @param key is a key in the SimpleOrderedHashtable.
     *  @return the value to which the key is mapped in this hashtable; null if
     *  the key is not mapped to any value in this hashtable.
     */
    synchronized public Object get(Object key) {
        return hashTable.get(key);
    }

    /**
     *  Returns an enumeration of the keys in this SimpleOrderedHashtable.
     *  @return an enumeration of the keys in this SimpleOrderedHashtable.
     */
    synchronized public Enumeration keys() {
        return orderedKeys.elements();
    }

    /**
     *  Returns an enumeration of the elements in this SimpleOrderedHashtable.
     *  @return an enumeration of the elements in this SimpleOrderedHashtable.
     */
    synchronized public Enumeration elements() {
        int s = hashTable.size();
        Vector elements = new Vector(s);
        for (int i=0; i<s; i++) {
            elements.addElement(elementAt(i));
        }
        return elements.elements();
    }

    /**
     *  Returns the component at the specified index.
     *  @param index is an index into this SimpleOrderedHashtable.
     *  @return the <code>Object</code> component at the specified index.
     *  @throws ArrayIndexOutOfBoundsException if index is out of bounds.
     */
    synchronized public Object elementAt(int index)
            throws ArrayIndexOutOfBoundsException {
        Object key = orderedKeys.elementAt(index);
        return hashTable.get(key);
    }

    /**
     *  Returns the key at the specified index.
     *  @param index is an index into this SimpleOrderedHashtable.
     *  @return the <code>Object</code> key at the specified index.
     *  @throws ArrayIndexOutOfBoundsException if index is out of bounds.
     */
    synchronized public Object keyAt(int index)
            throws ArrayIndexOutOfBoundsException {
        return orderedKeys.elementAt(index);
    }

    /**
     *  Returns the index of the specified <code>Object</code>.
     *  @param key is a key in the SimpleOrderedHashtable.
     *  @return the index of the specified <code>Object</code>.
     */
    synchronized public int getIndex(Object key) {
        return orderedKeys.indexOf(key);
    }

    /**
     *  Removes the key (and its corresponding value) from this hashtable. This
     *  method does nothing if the key is not in the hashtable.
     *  @param key is the key that needs to be removed.
     */
    synchronized public void remove(Object key) {
        orderedKeys.removeElement(key);
        hashTable.remove(key);
    }

    /**
     * Removes an element at the specified index.
     * @param i is the index of the element to remove.
     */
    synchronized public void removeElementAt(int i) {
        Object key = orderedKeys.elementAt(i);
        orderedKeys.removeElementAt(i);
        hashTable.remove(key);
    }

    /**
     *  Clears this SimpleOrderedHashtable so that it contains no keys.
     */
    synchronized public void clear() {
        orderedKeys.removeAllElements();
        hashTable.clear();
    }

    /**
     *  Returns the number of components in this SimpleOrderedHashtable.
     *  @return the number of components in this vector.
     */
    synchronized public int size() {
        return orderedKeys.size();
    }

    /**
     * Recomputes the SimpleOrderedHashtable capacity.
     * @param capacity is the capacity to ensure.
     */
    synchronized public void ensureCapacity(int capacity) {
        orderedKeys.ensureCapacity(capacity);
    }
}
 
内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值