题意:一个网络流的图,有n个点,从1~n,然后m条边,每个点有两个值,一个是人的数量一个是饭的数量。每条边有容量,还有走上去可能踩断电线的几率。问让所有人吃到饭的前提下断电线的最小概率是多少。
题解:
踩断电线的最小概率就是1-没踩断电线的最大概率。那就可以把一条路上的所有可能性乘起来就好,最小费用流没法处理乘法,就要取对数。要求最大概率就可以取相反数求费用流。求最短路的时候松弛要用eps。
(我的代码是可以卡时间过的。。。具体可以过得关键在111行)
#include<bits/stdc++.h>
using namespace std;
#define MAXN 110
#define MAXM 25000
#define INF 2e9
const double eps = 1e-8;
struct Edge
{
int to, next, cap, flow;
double cost;
}edge[MAXM];
int head[MAXN], tol;
int pre[MAXN];
double dis[MAXN];
bool vis[MAXN];
int N;//节点总个数,节点编号从0~N-1
void init(int n)
{
N = n;
tol = 0;
memset(head, -1, sizeof(head));
}
void addedge(int u, int v, int cap, double cost)
{
edge[tol].to = v;
edge[tol].cap = cap;
edge[tol].cost = cost;
edge[tol].flow = 0;
edge[tol].next = head[u];
head[u] = tol++;
edge[tol].to = u;
edge[tol].cap = 0;
edge[tol].cost = -cost;
edge[tol].flow = 0;
edge[tol].next = head[v];
head[v] = tol++;
}
bool spfa(int s, int t)
{
queue<int>q;
for (int i = 0; i <= N; i++)
{
dis[i] = INF;
vis[i] = false;
pre[i] = -1;
}
dis[s] = 0;
vis[s] = true;
q.push(s);
while (!q.empty())
{
//cout<<1<<endl;
int u = q.front();
q.pop();
vis[u] = false;
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (edge[i].cap > edge[i].flow &&
dis[v]-dis[u]-edge[i].cost>eps)
{
dis[v] = dis[u] + edge[i].cost;
pre[v] = i;
if (!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
if (pre[t] == -1)return false;
else return true;
}
//返回的是最大流,cost存的是最小费用
int minCostMaxflow(int s, int t, double &cost)
{
int flow = 0;
cost = 0;
while (spfa(s, t))
{
//cout<<1<<endl;
int Min = INF;
for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to])
{
if (Min > edge[i].cap - edge[i].flow)
Min = edge[i].cap - edge[i].flow;
}
for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to])
{
edge[i].flow += Min;
edge[i ^ 1].flow -= Min;
cost += edge[i].cost * Min;
}
flow += Min;
}
return flow;
}
int main()
{
int t,n,m,a,b;
scanf("%d",&t);
while (t--)
{
scanf("%d %d",&n,&m);
init(n + 1);
for (int i = 1; i <= n; i++)
{
scanf("%d %d",&a,&b);
int temp = a - b;//如果不用temp而用a-b做,会超时。这样会快20ms
if(temp > 0)
{
addedge(0, i, temp, 0);
}
else if(temp < 0)
{
addedge(i, n + 1, -temp, 0);
}
}
int u,v,f;
double w;
for (int i = 0; i < m; i++)
{
scanf("%d %d %d %lf",&u,&v,&f,&w);
w = -log2(1 - w);
if(f > 0)
addedge(u,v,1,0);
if(f - 1 > 0)
addedge(u,v,f - 1, w);
}
double cost = 0;
minCostMaxflow(0,n + 1,cost);
cost = 1 - pow(2,-cost);
printf("%.2f\n",cost);
}
}