Codeforces 3A. Shortest path of the king

本文介绍了一个基于Codeforces3A的编程题解决方案,任务是在8*8棋盘中找到两格之间的最短移动路径,利用简单的数学计算确定移动方向。

【题目来源】:Codeforces 3A.

A. Shortest path of the king

The king is left alone on the chessboard. In spite of this loneliness, he doesn't lose heart, because he has business of national importance. For example, he has to pay an official visit to square t. As the king is not in habit of wasting his time, he wants to get from his current position s to square t in the least number of moves. Help him to do this.

In one move the king can get to the square that has a common side or a common vertex with the square the king is currently in (generally there are 8 different squares he can move to).

Input

The first line contains the chessboard coordinates of square s, the second line — of square t.

Chessboard coordinates consist of two characters, the first one is a lowercase Latin letter (from a to h), the second one is a digit from 1to 8.

Output

In the first line print n — minimum number of the king's moves. Then in n lines print the moves themselves. Each move is described with one of the 8: L, R, U, D, LU, LD, RU or RD.

L, R, U, D stand respectively for moves left, right, up and down (according to the picture), and 2-letter combinations stand for diagonal moves. If the answer is not unique, print any of them.

Examples

input

a8
h1

output

7
RD
RD
RD
RD
RD
RD
RD

【题目大意】:在8*8的棋盘上任选两个点,找到两个点之间横纵距离的最大值,并输出从第一个点到第二个点的最短路径,共有上,下,左,右,左上,左下,右上,右下,八个方向可以走。

【AC代码】:

import java.util.Arrays;
import java.util.Scanner;

public class Main {
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		String s1 = sc.next();
		String s2 = sc.next();
		char s11 = s1.charAt(0);
		char s12 = s1.charAt(1);
		char s21 = s2.charAt(0);
		char s22 = s2.charAt(1);
		System.out.println(Math.max(Math.abs((int) (s11 - s21)),
				Math.abs((int) (s12 - s22))));
		while (s11 != s21 || s12 != s22) {
			if (s11 < s21) {
				s11++;
				System.out.print("R");
			} else if (s11 > s21) {
				s11--;
				System.out.print("L");
			}
			if (s12 > s22) {
				s12--;
				System.out.print("D");
			} else if (s12 < s22) {
				s12++;
				System.out.print("U");
			}
			System.out.println();
		}
	}
}

 

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值