Java泛型详解

例子

我们知道,使用变量之前要定义,定义一个变量时必须要指明它的数据类型,什么样的数据类型赋给什么样的值。
假如我们现在要定义一个类来表示坐标,要求坐标的数据类型可以是整数、小数和字符串,例如:
x = 10、y = 10
x = 12.88、y = 129.65
x = “东京180度”、y = “北纬210度”

针对不同的数据类型,除了借助方法重载,还可以借助自动装箱和向上转型。我们知道,基本数据类型可以自动装箱,被转换成对应的包装类;Object 是所有类的祖先类,任何一个类的实例都可以向上转型为 Object 类型,例如:
int --> Integer --> Object
double -->Double --> Object
String --> Object

这样,只需要定义一个方法,就可以接收所有类型的数据。请看下面的代码:

public class Demo {
    public static void main(String[] args){
        Point p = new Point();
        p.setX(10);  // int -> Integer -> Object
        p.setY(20);
        int x = (Integer)p.getX();  // 必须向下转型
        int y = (Integer)p.getY();
        System.out.println("This point is:" + x + ", " + y);
       
        p.setX(25.4);  // double -> Integer -> Object
        p.setY("东京180度");
        double m = (Double)p.getX();  // 必须向下转型
        double n = (Double)p.getY();  // 运行期间抛出异常
        System.out.println("This point is:" + m + ", " + n);
    }
}
class Point{
    Object x = 0;
    Object y = 0;
    public Object getX() {
        return x;
    }
    public void setX(Object x) {
        this.x = x;
    }
    public Object getY() {
        return y;
    }
    public void setY(Object y) {
        this.y = y;
    }
}

上面的代码中,生成坐标时不会有任何问题,但是取出坐标时,要向下转型,在 Java多态对象的类型转换 一文中我们讲到,向下转型存在着风险,而且编译期间不容易发现,只有在运行期间才会抛出异常,所以要尽量避免使用向下转型。运行上面的代码,第12行会抛出 java.lang.ClassCastException 异常。

那么,有没有更好的办法,既可以不使用重载(有重复代码),又能把风险降到最低呢?

有,可以使用泛型类(Java Class),它可以接受任意类型的数据。所谓“泛型”,就是“宽泛的数据类型”,任意的数据类型。

更改上面的代码,使用泛型类:

public class Demo {
    public static void main(String[] args){
        // 实例化泛型类
        Point<Integer, Integer> p1 = new Point<Integer, Integer>();
        p1.setX(10);
        p1.setY(20);
        int x = p1.getX();
        int y = p1.getY();
        System.out.println("This point is:" + x + ", " + y);
       
        Point<Double, String> p2 = new Point<Double, String>();
        p2.setX(25.4);
        p2.setY("东京180度");
        double m = p2.getX();
        String n = p2.getY();
        System.out.println("This point is:" + m + ", " + n);
    }
}
// 定义泛型类
class Point<T1, T2>{
    T1 x;
    T2 y;
    public T1 getX() {
        return x;
    }
    public void setX(T1 x) {
        this.x = x;
    }
    public T2 getY() {
        return y;
    }
    public void setY(T2 y) {
        this.y = y;
    }
}

运行结果:
This point is:10, 20
This point is:25.4, 东京180度

与普通类的定义相比,上面的代码在类名后面多出了 <T1, T2>,T1, T2 是自定义的标识符,也是参数,用来传递数据的类型,而不是数据的值,我们称之为类型参数。在泛型中,不但数据的值可以通过参数传递,数据的类型也可以通过参数传递。T1, T2 只是数据类型的占位符,运行时会被替换为真正的数据类型。

传值参数(我们通常所说的参数)由小括号包围,如 (int x, double y),类型参数(泛型参数)由尖括号包围,多个参数由逗号分隔,如 <T><T, E>

类型参数需要在类名后面给出。一旦给出了类型参数,就可以在类中使用了。类型参数必须是一个合法的标识符,习惯上使用单个大写字母,通常情况下,K 表示键,V 表示值,E 表示异常或错误,T 表示一般意义上的数据类型

泛型类在实例化时必须指出具体的类型,也就是向类型参数传值,格式为:

className variable<dataType1, dataType2> = new className<dataType1, dataType2>();

也可以省略等号右边的数据类型,但是会产生警告,即:

className variable<dataType1, dataType2> = new className();

因为在使用泛型类时指明了数据类型,赋给其他类型的值会抛出异常,既不需要向下转型,也没有潜在的风险,比本文一开始介绍的自动装箱和向上转型要更加实用。

注意

泛型是 Java 1.5 的新增特性,它以C++模板为参照,本质是参数化类型(Parameterized Type)的应用。
类型参数只能用来表示引用类型,不能用来表示基本类型,如 int、double、char 等。但是传递基本类型不会报错,因为它们会自动装箱成对应的包装类。
##泛型方法
除了定义泛型类,还可以定义泛型方法,例如,定义一个打印坐标的泛型方法:

public class Demo {
    public static void main(String[] args){
        // 实例化泛型类
        Point<Integer, Integer> p1 = new Point<Integer, Integer>();
        p1.setX(10);
        p1.setY(20);
        p1.printPoint(p1.getX(), p1.getY());
       
        Point<Double, String> p2 = new Point<Double, String>();
        p2.setX(25.4);
        p2.setY("东京180度");
        p2.printPoint(p2.getX(), p2.getY());
    }
}
// 定义泛型类
class Point<T1, T2>{
    T1 x;
    T2 y;
    public T1 getX() {
        return x;
    }
    public void setX(T1 x) {
        this.x = x;
    }
    public T2 getY() {
        return y;
    }
    public void setY(T2 y) {
        this.y = y;
    }
   
    // 定义泛型方法
    public <T1, T2> void printPoint(T1 x, T2 y){
        T1 m = x;
        T2 n = y;
        System.out.println("This point is:" + m + ", " + n);
    }
}

运行结果:
This point is:10, 20
This point is:25.4, 东京180度

上面的代码中定义了一个泛型方法 printPoint(),既有普通参数,也有类型参数,类型参数需要放在修饰符后面、返回值类型前面。一旦定义了类型参数,就可以在参数列表、方法体和返回值类型中使用了。

与使用泛型类不同,使用泛型方法时不必指明参数类型,编译器会根据传递的参数自动查找出具体的类型。泛型方法除了定义不同,调用就像普通方法一样。

注意:泛型方法与泛型类没有必然的联系,泛型方法有自己的类型参数,在普通类中也可以定义泛型方法。泛型方法 printPoint() 中的类型参数 T1, T2 与泛型类 Point 中的 T1, T2 没有必然的联系,也可以使用其他的标识符代替:

public static <V1, V2> void printPoint(V1 x, V2 y){
    V1 m = x;
    V2 n = y;
    System.out.println("This point is:" + m + ", " + n);
}

本质

类型限定的意思

  • 把对象/集合里面的元素类型推迟到创建的时候。

  • 类型参数化

泛型接口

在Java中也可以定义泛型接口,这里不再赘述,仅仅给出示例代码:

public class Demo {
    public static void main(String arsg[]) {
        Info<String> obj = new InfoImp<String>("www.weixueyuan.net");
      //实现接口
        Info<String> obj2 = new Info<String>() {
            @Override
            public String getVar() {
                return "123";
            }
        };


        //不好的初始化方法,没有利用接口的多态
        InfoImp<String> obj3 = new InfoImp<>("hh");

        System.out.println("Length Of String: " + obj.getVar().length());
        System.out.println(obj2.getVar());
        System.out.println(obj3.getVar());

        //实现接口
       Info<String> test =  new Info<String>() {
            @Override
            public String getVar() {
                return "helloword";
            }
        };

        System.out.println(test.getVar());
        System.out.println(getInfo().getVar());
        System.out.println(getInfoByImp().getVar());
    }


    //实现接口
    public static Info<String> getInfo(){
        return new Info<String>() {
            @Override
            public String getVar() {
                return "getInfoByInterface";
            }
        };

    }

    //返回实现方法
    public static Info<String> getInfoByImp(){
        return new InfoImp<>("getInfoByImp");
    }
}

运行结果:
Length Of String: 18
123
hh
helloword
getInfoByInterface
getInfoByImp

类型擦除

擦拭法

  • 编译器把类型视为Object
  • 编译器根据实现安全的强制转型。

擦拭法的局限

  • < T > 不可能是基本类型,如int
  • Object无法持有基本类型
  • 无法取得带泛型的Class,例如Pari.class
  • 无法判断带泛型的Class,例如 x instanceof Pair
  • 不能实例化T类型,因为擦拭后实际是new Object(),实例化T必须借助Class 例如 new T();
    如果在使用泛型时没有指明数据类型,那么就会擦除泛型类型,请看下面的代码:
public class Demo {
    public static void main(String[] args){
        Point p = new Point();  // 类型擦除
        p.setX(10);
        p.setY(20.8);
        int x = (Integer)p.getX();  // 向下转型
        double y = (Double)p.getY();
        System.out.println("This point is:" + x + ", " + y);
    }
}
class Point<T1, T2>{
    T1 x;
    T2 y;
    public T1 getX() {
        return x;
    }
    public void setX(T1 x) {
        this.x = x;
    }
    public T2 getY() {
        return y;
    }
    public void setY(T2 y) {
        this.y = y;
    }
}

运行结果:
This point is:10, 20.8

因为在使用泛型时没有指明数据类型,为了不出现错误,编译器会将所有数据向上转型为 Object,所以在取出坐标使用时要向下转型,这与本文一开始不使用泛型没什么两样。

限制泛型的可用类型

在上面的代码中,类型参数可以接受任意的数据类型,只要它是被定义过的。但是,很多时候我们只需要一部分数据类型就够了,用户传递其他数据类型可能会引起错误。例如,编写一个泛型函数用于返回不同类型数组(Integer 数组、Double 数组、Character 数组等)中的最大值:

public <T> T getMax(T array[]){
    T max = null;
    for(T element : array){
        max = element.doubleValue() > max.doubleValue() ? element : max;
    }
    return max;
}

上面的代码会报错,doubleValue() 是 Number 类的方法,不是所有的类都有该方法,所以我们要限制类型参数 T,让它只能接受 Number 及其子类(Integer、Double、Character 等)。

通过 extends 关键字可以限制泛型的类型,改进上面的代码:

public <T extends Number> T getMax(T array[]){
    T max = null;
    for(T element : array){
        max = element.doubleValue() > max.doubleValue() ? element : max;
    }
    return max;
}

表示 T 只接受 Number 及其子类,传入其他类型的数据会报错。这里的限定使用关键字 extends,后面可以是类也可以是接口。但这里的 extends 已经不是继承的含义了,应该理解为 T 是继承自 Number 类的类型,或者 T 是实现了 XX 接口的类型。

泛型方法

泛型类,是在实例化类的时候指明泛型的具体类型;泛型方法,是在调用方法的时候指明泛型的具体类型

这里写图片描述

这里写图片描述

说明一下,定义泛型方法时,必须在返回值前边加一个,来声明这是一个泛型方法,持有一个泛型T,然后才可以用泛型T作为方法的返回值。
Class的作用就是指明泛型的具体类型,而Class类型的变量c,可以用来创建泛型类的对象。
为什么要用变量c来创建对象呢?既然是泛型方法,就代表着我们不知道具体的类型是什么,也不知道构造方法如何,因此没有办法去new一个对象,但可以利用变量c的newInstance方法去创建对象,也就是利用反射创建对象。
泛型方法要求的参数是Class类型,而Class.forName()方法的返回值也是Class,因此可以用Class.forName()作为参数。其中,forName()方法中的参数是何种类型,返回的Class就是何种类型。在本例中,forName()方法中传入的是User类的完整路径,因此返回的是Class类型的对象,因此调用泛型方法时,变量c的类型就是Class,因此泛型方法中的泛型T就被指明为User,因此变量obj的类型为User。
当然,泛型方法不是仅仅可以有一个参数Class,可以根据需要添加其他参数。
为什么要使用泛型方法呢?因为泛型类要在实例化的时候就指明类型,如果想换一种类型,不得不重新new一次,可能不够灵活;而泛型方法可以在调用的时候指明类型,更加灵活。

注意:一般的应用开发中泛型使用较少,多用在框架或者库的设计中。

<?extends A >与区别

这是泛型嘛,泛型简单的意思就是说,你不知道你想要的这个类具体是啥,但是你可以知道这个类的相关子类或者父类

所以从上面的观点来看,<? extends A><T extends A>是没啥区别的

例如下面这个两个方法表达的意思是一样的,都表示参数是一个集合,这个集合可能包含着A或者A的任何子类

public void someMethod(List<? extends A> list);
public void someMethod(List<T extends A> list);

这是一种情况,但是相比而言,一个类中,多处方法都需要这个泛型的时候,<T extends A>要比<? extends A>方便的多,就像在代码里,你声明了一个变量后,你就可以在这个变量的代码块里任何地方调用,同理<T extends A>就像是声明了一个泛型变量T,这个T是一个A或者A的子类,然后这个变量T在所能用的范围之内,你都可以直接用T表示,不用再写<? extends A>或者<T extends A>,比如:

// 前面定义了T,后面参数就可以用T表示了
public <T extends A>void some(List<T> t);

上面是方法里,这个范围比较窄,放在类里,效果更明显,比如:

public class B<T extends A>{
    // 一个A类或者A子类的变量
    private T a;
     
    // 一个方法
    public void some(List<T> list);
}

所以可以看到,差别也不太大。

<? extends ClassA>

比如我们有一个Stack类,类里提供一个pullAll方法,我们想把一系列元素全部放到堆栈中,如下方法

   // Stack定义
   public class Stack<E> {
       public Stack();
       public E pop();
       public boolean isEmpty();
   }

   // ...
   public <E> void pushAll(Iterable<E> src) {
       for(E e : src) {
           push(e);
       }
   }

这个方法编译时没问题,Iterable src的元素类型与堆栈的类型完全匹配就没有问题。但是假如有一个Stack调用了push(intVal),这里的intVal是Integer类型,这是可以的,因为Integer是Number的一个子类型,但下面的代码会报编译错误,

Stack<Number> numberStack = new Stack<Number>();
Iterable<Integer> integers = "...";
numberStack.pushAll(integers);

因为在Java中,参数化类型是不可变的。所以现在我们的通配符类型就派上用场了,代码如下

public void pushAll(Iterable<? extends E> scr) {
    for( E e : src) {
        push(e);
    }
}   

此处就必须用通配符?,代表泛型的泛指“E的某个子类型的Iterator接口”。

参考:
http://www.weixueyuan.net/view/6321.html
http://www.cnblogs.com/iyangyuan/archive/2013/04/09/3011274.html
https://zhidao.baidu.com/question/1543114508325510827.html(〈?extends A 〉与〈T extends A〉区别)
http://blog.youkuaiyun.com/cgf1993/article/details/50754584(<? extends SomeClass>与的区别)

<think>嗯,用户想了解Java详解。首先,我需要回忆一下Java的基本概念和应用场景。Java 5引入的特性,主要用于增强类安全,减少类转换的麻烦,以及提高代码的可重用性。用户可能是在学习过程中遇到了相关的困惑,或者在实际开发中需要更深入的理解。 接下来,用户的需求可能包括了解的基本语法、类擦除、通配符、方法、类与接口,以及使用限制等。需要分步骤讲解,确保结构清晰。可能需要从为什么需要开始,然后逐步展开各个部分。 要注意的是,用户可能对类擦除这一Java的实现机制不太清楚,需要详细解释。同时,通配符部分,尤其是上下界通配符的区别和使用场景,可能是容易混淆的地方,需要举例说明。此外,在集合框架中的应用是一个常见的例子,可以用来帮助用户理解。 还需要考虑用户可能的误区,比如在运行时类信息被擦除的问题,导致无法进行instanceof判断或者创建数组。这些限制需要明确说明,避免用户在实际使用中犯错。 另外,用户可能对方法与类的区别不太清楚,需要分别举例说明。比如,方法可以在普通类中定义,而类则是整个类作用于类参数。 最后,要确保语言通俗易懂,避免过于技术性的术语,同时结合代码示例,让用户能够通过实例理解抽象的概念。检查是否有遗漏的重要知识点,比如继承、通配符捕获等,但可能根据用户的提问深度决定是否展开。</think>以下是对Java的系统化详解,分步骤解析核心概念和用法: --- ### 一、解决的问题 1. **类安全** 在集合等场景中,编译时检测类错误,避免运行时`ClassCastException` ```java // 非写法(存在隐患) List list = new ArrayList(); list.add("abc"); Integer num = (Integer) list.get(0); // 运行时异常 // 写法(编译时报错) List<String> list = new ArrayList<>(); list.add(123); // 编译错误 ``` 2. **消除强制类转换** 明确容器存储类,减少冗余代码 --- ### 二、基础语法 #### 1. 类 ```java public class Box<T> { private T content; public void setContent(T content) { this.content = content; } public T getContent() { return content; } } ``` - `T`为类参数(可任意命名,常用`T`, `E`, `K`, `V`等) - 实例化时指定具体类: ```java Box<Integer> intBox = new Box<>(); ``` #### 2. 接口 ```java public interface Comparator<T> { int compare(T o1, T o2); } ``` #### 3. 方法 ```java public <T> void printArray(T[] array) { for (T element : array) { System.out.println(element); } } ``` - 类参数声明在方法返回值前 --- ### 三、类擦除(关键机制) 1. **编译时类检查** 编译器检查合法性 2. **运行时类擦除** 生成的字节码中不包含信息,替换为原始类 ```java List<String> list = new ArrayList<>(); // 编译后等效于 List list = new ArrayList(); ``` 3. **桥方法生成** 用于保持多态性(如继承类时) --- ### 四、通配符 #### 1. 上界通配符 `<? extends T>` ```java void process(List<? extends Number> list) { // 允许读取为Number类 Number num = list.get(0); // 不允许添加元素(编译器无法确定具体子类) } ``` #### 2. 下界通配符 `<? super T>` ```java void addNumbers(List<? super Integer> list) { list.add(42); // 允许添加Integer及其父类元素 Object obj = list.get(0); // 读取只能作为Object } ``` #### 3. 无限定通配符 `<?>` ```java void printList(List<?> list) { for (Object elem : list) { System.out.println(elem); } } ``` --- ### 五、重要限制 1. **无法实例化类参数** ```java T obj = new T(); // 编译错误 ``` 2. **不能创建数组** ```java T[] array = new T[10]; // 编译错误 ``` 3. **静态上下文中不可用** ```java public class Test<T> { private static T instance; // 错误 } ``` 4. **instanceof检测无效** ```java if (list instanceof ArrayList<String>) { ... } // 编译错误 ``` --- ### 六、高级技巧 1. **类参数多重限定** ```java <T extends Comparable & Serializable> ``` 2. **与反射** ```java Type type = new TypeToken<Map<String, Integer>>(){}.getType(); ``` 3. **PECS原则** Producer-Extends, Consumer-Super (适合选择通配符边界的场景) --- ### 七、典应用场景 1. 集合框架(`ArrayList<E>`, `HashMap<K,V>`) 2. 工具类方法(`Collections.sort()`) 3. 回调接口设计(`Comparator<T>`) 4. 自定义通用数据结构 --- 通过掌握这些核心概念,可以写出类更安全、复用性更强的Java代码。建议结合具体项目实践加深理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值