啤酒与尿布的故事已经成为了关联规则挖掘的经典案例,还有人专门出了一本书《啤酒与尿布》,虽然说这个故事是哈弗商学院杜撰出来的,但确实能很好的解释关联规则挖掘的原理。
很多的时候,我们都需要从大量数据中提取出有用的信息,从大规模数据中寻找物品间的隐含关系叫做关联分析(association analysis)或者关联规则学习(association rule learning)。比如在平时的购物中,那些商品一起捆绑购买销量会比较好,又比如购物商城中的那些推荐信息,都是根据用户平时的搜索或者是购买情况来生成的。如果是蛮力搜索的话代价太高了,所以Apriori就出现了,就是为了解决这类问题的。Apriori算法的两大缺点,可能产生大量的候选集,以及可能需要重复扫描数据库
算法实现
1、支持度与置性度
1、在数据挖掘当中,通常用“支持度”(support)和“置性度”(confidence)两个概念来量化事物之间的关联规则。它们分别反映所发现规则的有用性和确定性。
支持度(support):对于A->B:集合A与集合B中的项在一条记录中同时出现的次数/数据记录的个数
置性度(confidence):指的是发生事件A的基础上发生事件B的概率
例子:
support({啤酒}–>{尿布}) = 啤酒和尿布同时出现的次数/数据记录数 = 3/5=60%
confidence({啤酒}–>{尿布}) = 啤酒和尿布同时出现的次数/啤酒出现的次数=3/3=100%;confidence({尿布}–>{啤酒}) = 啤酒和尿布同时出现的次数/尿布出现的次数 = 3/4 = 75%。
支持度和置性度越高,说明规则越强,关联规则挖掘就是挖掘出满足一定强度的规则。
2、算法步骤
a. 连接步
若有两个k-1项集,每个项集按照“属性-值”(一般按值)的字母顺序进行排序。如果两个k-1项集的前k-2个项相同,而最后一个项不同,则证明它们是可连接的,即这个k-1项集可以连接,即可连接生成k项集。例子:有两个3项集:{a, b, c}{a, b, d},这两个3项集就是可连接的,它们可以连接生成4项集{a, b, c, d}。又如两个3项集{a, b, c}{a, d, e},这两个3项集显示是不能连接生成3项集的。
b.剪枝步
若一个项集的子集不是频繁项集,则该项集肯定也不是频繁项集。这个很好理解,举一个例子,若存在3项集{a, b, c},如果它的2项子集{a, b}的支持度即同时出现的次数达不到阈值,则{a, b, c}同时出现的次数显然也是达不到阈值的。因此,若存在一个项集的子集不是频繁项集,那么该项集就应该被无情的舍弃。
python 代码例子:
import pandas as pd
a = [ [1,0,0,0,1],[1,0,0,0,1],[0,0,0,0,1],[1,1,1,0,0],[0,0,0,1,1],[1,0,1,0,1],[1,0,0,0,1],[1,0,1,1,0],[0,0,1,0,1],[0,1,1,0,1]]
data = pd.DataFrame(a,columns=list("abcde"))
data

这里预定最小支持度minSupport=2,下面用图例说明算法运行的过程:

计算支持度,置性度代码:
from __future__ import print_function
import pandas as pd
#自定义连接函数,用于实现L_{k-1}到C_k的连接
def connect_string(x, ms):
x = list(map(lambda i:sorted(i.split(ms)), x))
l = len(x[0])
r = []
for i in range(len(x)):
for j in range(i,len(x)):
if x[i][:l-1] == x[j][:l-1] and x[i][l-1] != x[j][l-1]:
r.append(x[i][:l-1]+sorted([x[j][l-1],x[i][l-1]]))
return r
#寻找关联规则的函数
def find_rule(d, support, confidence, ms = u'--'):
result = pd.DataFrame(index=['support', 'confidence']) #定义输出结果
support_series = 1.0*d.sum()/len(d) #支持度序列
column = list(support_series[support_series > support].index) #初步根据支持度筛选
k = 0
while len(column) > 1:
k = k+1
print(u'\n正在进行第%s次搜索...' %k)
column = connect_string(column, ms)
print(u'数目:%s...' %len(column))
sf = lambda i: d[i].prod(axis=1, numeric_only = True) #新一批支持度的计算函数
#创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。
d_2 = pd.DataFrame(list(map(sf,column)), index = [ms.join(i) for i in column]).T
support_series_2 = 1.0*d_2[[ms.join(i) for i in column]].sum()/len(d) #计算连接后的支持度
column = list(support_series_2[support_series_2 > support].index) #新一轮支持度筛选
support_series = support_series.append(support_series_2)
column2 = []
for i in column: #遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B?
i = i.split(ms)
for j in range(len(i)):
column2.append(i[:j]+i[j+1:]+i[j:j+1])
cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) #定义置信度序列
for i in column2: #计算置信度序列
cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))]/support_series[ms.join(i[:len(i)-1])]
for i in cofidence_series[cofidence_series > confidence].index: #置信度筛选
result[i] = 0.0
result[i]['confidence'] = cofidence_series[i]
result[i]['support'] = support_series[ms.join(sorted(i.split(ms)))]
result = result.T.sort_values(['confidence','support'], ascending = False) #结果整理,输出
print(u'\n结果为:')
print(result)
return result
用上面的代码来计算例子的置性度及支持度
support =0.2
confidence = 0.5
ms = '---'
find_rule(data, support, confidence, ms = u'--')

9162

被折叠的 条评论
为什么被折叠?



