离散化的认识

本文介绍了一种常用的数据处理技巧——离散化,通过挑选出实际应用所需的值来降低时间复杂度,实现对低效算法的改进。文章详细阐述了离散化的原理与步骤,并提供了利用STL进行离散化处理的具体方法。
部署运行你感兴趣的模型镜像

离散化的认识

离散化,一种常见的数据处理技巧,可以有效的降低时间复杂度,可以做到将一些低效的算法进行改进,甚至拟造出一些不可能的算法,使其速度大为提高。
离散化的基本思想就是将一些巨大的范围内,挑选出要用的值,再进行处理。

离散化的处理

注:对数据进行离散化处理的前提是这些数据只于他们的相对大小有关,而不与其具体数值有关,例如排序等。
进行离散化的处理其实很简单:为所有巨大的数据从小到大进行编号。
例如有6个数:
66666 66 666 666666 6 6666
他们排序后得:6<66<666<6666<66666<666666
所以这六个数分别表示为:5 2 3 6 1 4(即这几个数在排序后所得结果得位置)

利用STL对数据进行离散化处理

思路:利用sort排序,后删除重复元素,引出其代表的值(即标序号)。
设序列a[n]为待进行处理的序列,b[n]为其副本。

sort(sub_a,sub_a+n);
int size=unique(sub_a,sub_a+n)-sub_a;//size为离散化后元素个数
for(i=0;i<n;i++)
a[i]=lower_bound(sub_a,sub_a+size,a[i])-sub_a + 1;//k为b[i]经离散化后对应的值

对于第3步,若离散化后序列为0,1,2,...,size - 1则用lower_bound,从1,2,3,...,size则用upper_bound。其中lower_bound返回第1个不小于b[i]的值的指针,而upper_bound返回第1个大于b[i]的值的指针,当然在这个题中也可以用lower_bound然后再加1得到与upper_bound相同结果,两者都是针对以排好序列。使用STL离散化大大减少了代码量且结构相当清晰。

以上为“数据中的离散化”的内容,如有不足望大家指出,例题日后会专门一篇文章的!

您可能感兴趣的与本文相关的镜像

LobeChat

LobeChat

AI应用

LobeChat 是一个开源、高性能的聊天机器人框架。支持语音合成、多模态和可扩展插件系统。支持一键式免费部署私人ChatGPT/LLM 网络应用程序。

MATLAB代码实现了一个基于多种智能优化算法优化RBF神经网络的回归预测模型,其核心是通过智能优化算法自动寻找最优的RBF扩展参数(spread),以提升预测精度。 1.主要功能 多算法优化RBF网络:使用多种智能优化算法优化RBF神经网络的核心参数spread。 回归预测:对输入特征进行回归预测,适用于连续值输出问题。 性能对比:对比不同优化算法在训练集和测试集上的预测性能,绘制适应度曲线、预测对比图、误差指标柱状图等。 2.算法步骤 数据准备:导入数据,随机打乱,划分训练集和测试集(默认7:3)。 数据归一化:使用mapminmax将输入和输出归一化到[0,1]区间。 标准RBF建模:使用固定spread=100建立基准RBF模型。 智能优化循环: 调用优化算法(从指定文件夹中读取算法文件)优化spread参数。 使用优化后的spread重新训练RBF网络。 评估预测结果,保存性能指标。 结果可视化: 绘制适应度曲线、训练集/测试集预测对比图。 绘制误差指标(MAE、RMSE、MAPE、MBE)柱状图。 十种智能优化算法分别是: GWO:灰狼算法 HBA:蜜獾算法 IAO:改进天鹰优化算法,改进①:Tent混沌映射种群初始化,改进②:自适应权重 MFO:飞蛾扑火算法 MPA:海洋捕食者算法 NGO:北方苍鹰算法 OOA:鱼鹰优化算法 RTH:红尾鹰算法 WOA:鲸鱼算法 ZOA:斑马算法
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值